Prevalence of motor problems in children with attention deficit hyperactivity disorder in Hong Kong

Hong Kong Med J 2016 Apr;22(2):98–105 | Epub 11 Mar 2016
DOI: 10.12809/hkmj154591
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Prevalence of motor problems in children with attention deficit hyperactivity disorder in Hong Kong
KW Tsui, MB, BS, FHKCPaed1; Kelly YC Lai, MB, BS, FHKAM (Psychiatry)2; Marshall MC Lee, FHKCPsy3; Caroline KS Shea, FHKCPsy3; Luke CT Tong, FHKCPaed, FHKAM (Paediatrics)1
1 Department of Paediatrics and Adolescent Medicine, Alice Ho Miu Ling Nethersole Hospital, Tai Po, Hong Kong
2 Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong
3 Department of Psychiatry, Alice Ho Miu Ling Nethersole Hospital, Tai Po, Hong Kong
 
Corresponding author: Dr KW Tsui (tsuikw@ha.org.hk)
 
An earlier version of this paper was presented at the Combined PN and DBP Joint Scientific Meeting, organised by the Hong Kong Society of Child Neurology and Developmental Paediatrics held in Hong Kong on 27 March 2014.
 
 
 Full paper in PDF
Abstract
Introduction: Local data on the occurrence of motor problems in children with attention deficit hyperactivity disorder are not available but an understanding of this important issue may enable better planning of medical services. We aimed to determine the prevalence of motor problems in children with attention deficit hyperactivity disorder in a local population.
 
Methods: In this descriptive cross-sectional study, children aged 6 to 9 years diagnosed with attention deficit hyperactivity disorder over a period of 6 months from 1 July to 31 December 2011 were recruited from the Joint Paediatric and Child Psychiatric ADHD Program in New Territories East Cluster in Hong Kong. Movement Assessment Battery for Children and Developmental Coordination Disorder Questionnaire–Chinese version were used to determine the presence of motor problems.
 
Results: Data from 95 participants were included in the final analysis. The number of children who had no, borderline, or definite motor problems was 63, 15, and 17, respectively. It is estimated that up to one third of local children with attention deficit hyperactivity disorder might have developmental coordination disorder.
 
Conclusions: Motor problems are common in local children with attention deficit hyperactivity disorder and figures are comparable with those from other parts of the world. Despite the various limitations of this study, the magnitude of the problem should not be overlooked.
 
 
New knowledge added by this study
  • This study determined the prevalence of motor problems in local children with attention deficit hyperactivity disorder (ADHD), which was not previously available in Hong Kong.
Implications for clinical practice or policy
  • It is important to include motor performance as part of the assessment and management of children with ADHD.
 
 
Introduction
Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental problems in children. In Hong Kong, the prevalence of ADHD among primary one Chinese schoolboys has been reported to be 8.9%.1 Associated neurodevelopmental co-morbidities and mental health problems are frequently found among individuals with ADHD. The majority (67%) have at least one co-morbidity and the degree of functional impairment increases stepwise with the number of associated co-morbidities that includes dyslexia, other specific learning disorders, motor incoordination, anxiety, depression, oppositional defiance disorder, tics, and Tourette syndrome.2 3 A diverse group of motor problems has been found to be co-morbid with ADHD, including an increase in associated movements.4 Individual subtests of the Motor Function Neurological Assessment reveal that 80% to 96% of children with ADHD, compared with 0% to 44% of a control group, demonstrate moderate-to-severe problems in motor inhibition and proximal truncal stabilisation.5 Children with ADHD also experience greater difficulties in handwriting and penmanship, which is independent of other motor problems associated with the disorder.6 7
 
Developmental coordination disorder (DCD) is a well-recognised motor disability in an otherwise healthy individual. The Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) defines DCD as marked impairment in performance of motor skills, significantly interfering with daily activities and/or academic achievements.8 The degree of coordination deficit is not consistent with the child’s intellectual ability and is not caused by pervasive developmental disorder or general medical condition. The prevalence of DCD in the normal population varies from 4% to 19%.9 10 11 12 Clinically, DCD is a heterogeneous condition with coordination deficits involving gross motor skills, fine motor skills, or both. Affected children show difficulties and restricted participation in daily living, eg self-care activities, academic achievement, leisure, and sports. Internalising symptoms and motor coordinating problems frequently co-occur in these children but their causal relationship is unclear.13 This condition is believed to be lifelong and the majority of affected children will not outgrow the problems. They will continue to experience motor difficulties, poor self-concept, and various kinds of problems at school.14 Children with DCD benefit from accommodation in school and multidisciplinary interventions that focus on task-specific training activities relevant to daily living and function.15 16 17
 
The prevalence of DCD in children with ADHD has been reported to be as high as 30% to 50%, depending on case definitions.18 19 The presence of ADHD co-morbid with DCD carries the worst prognosis and predicts poor psychosocial function in early adulthood.20 Therefore early identification and intervention in DCD is important in this group of children who are already adversely affected by ADHD.
 
Local data on the occurrence of motor problems in children with ADHD are not available but an understanding of this important issue may enable better planning of medical services. As such, the aim of this study was to estimate the prevalence of motor problems in a sample of children with ADHD at a public hospital in Hong Kong.
 
Methods
The participants were selected from patients referred to the Joint Paediatric and Child Psychiatric ADHD Program, a collaboration of Paediatricians and Child Psychiatrists of the New Territories East Cluster (NTEC) of Hong Kong over a period of 6 months from 1 July to 31 December 2011. The hospitals in NTEC serve a population of approximately one million and this ADHD Program is the only public service provided for children with ADHD within the cluster. Hospital records of patients aged 6 to 9 years at their first visit were reviewed. Potential candidates were those with a diagnosis of ADHD clearly documented in their record and in whom medication for ADHD was indicated. This study also included children with confirmed ADHD but whose parents had declined drug treatment. The diagnosis of ADHD was based on DSM-IV through clinical judgement of individual physicians during the clinic visit. Rating scales, such as Strengths and Weaknesses of ADHD symptoms and Normal Behavior Scale, were used in some patients as a reference but the diagnosis of ADHD remained clinical in our daily practice. In order to recruit patients with a more definitive diagnosis of ADHD, only those in whom drug treatment was indicated were included as potential candidates. This sample should therefore represent most children diagnosed with ADHD in a clinic setting. Patients were excluded when hospital records documented the presence of intellectual disability, features of autistic spectrum disorder, or medical conditions that could affect motor performance, such as cerebral palsy, hemiplegia, or a neuromuscular condition. This was consistent with the exclusion criteria for DCD in DSM-IV.
 
Movement Assessment Battery for Children (MABC) is commonly used as a standardised tool to diagnose DCD in both clinical and research settings.21 It provides an objective and quantitative measure of the motor performance of children between 4 and 12 years of age. There is good concurrent validity between MABC and Bruininks-Oseretsky test22 and a local study has also shown that this instrument provides satisfactory inter-rater and test-retest reliability.23 The assessment comprises eight test items related to three motor domains, namely manual dexterity, ball skills, and balance (static and dynamic). The sum of scores from the eight test items generates a total impairment score (TIS) and categorises children into one of the three groups—no, borderline, or definite motor problems. The Developmental Coordination Disorder Questionnaire (DCDQ) is a parent-reporting questionnaire first developed in Canada as a reliable and valid screening tool for DCD.24 25 It comprises statements by which parents rate their child’s motor performance in comparison with other children of the same age for ball games, balance, and handwriting skills across home, school, and play environments. A Chinese version of the DCDQ (DCDQ-C) has been validated in Taiwan as a screening tool for DCD in a Chinese-speaking community.26 Parents responded to each of the 15 questions on a 5-point Likert scale to generate a total raw score which was then converted into a probability of having DCD. A score of >40% chance is suggestive of DCD while 25% to 40% chance indicates a suspected case. In this study, DSM-IV was used to diagnose DCD and the questionnaire provided information on one of the diagnostic criteria about any impairment in daily functions related to motor performance.
 
The selected candidates were invited to attend a one-to-one study session that lasted approximately 30 minutes. The investigator performed MABC on the children after obtaining consent from the parents/carers. Baseline information was also collected and included age, gender, primary school level, ADHD medication use, drugs taken before assessment, gestational age, birth weight, and socio-economic group.
 
Statistical analysis was performed using the Statistical Package for the Social Sciences (Windows version 16.0; SPSS Inc, Chicago [IL], US). The result of MABC was used as the diagnostic standard for calculation of DCD prevalence in children with ADHD. A diagnosis of DCD was made when the TIS was ≥10, indicating ‘borderline’ (TIS=10 to 13.5) or ‘definite’ (TIS >13.5) motor problems, and representing the 15th or 5th percentile of TIS in a general population, respectively. The cut-off at either the 5th or 15th percentile varied among published data. As diagnosis of DCD requires fulfilling other criteria, such as impairment of daily activities, raising the cut-off to the 15th percentile in MABC could improve the sensitivity of the test. Nonetheless, use of the DCDQ-C avoided the risk of overdiagnosis. Prevalence was expressed as the percentage of DCD cases in participants with ADHD who underwent MABC assessment. The Chi squared test was applied to detect any difference in characteristics of participants with and without DCD. Analysis of variance was used to detect any significant difference in TIS of the MABC between DCDQ-C–defined motor performance groups. The concurrent validity was investigated by testing the probability score of DCDQ-C against TIS of MABC with Pearson’s correlation coefficient. Sensitivity, specificity, and positive and negative predictive values of DCDQ-C were calculated.
 
Ethical approval was obtained from the Joint Chinese University of Hong Kong and NTEC Clinical Research Ethics Committee.
 
Results
From 1 July to 31 December 2011, 304 new cases were referred to the Joint Paediatric and Child Psychiatric ADHD Program of NTEC. Of the 195 potential candidates aged 6 to 9 years, diagnosis of ADHD was unconfirmed in 38. After exclusion of 21 patients with autistic features, one patient with moderate intellectual disability, one patient with left hemiplegia, and one patient with possible neurological deficit following cardiopulmonary resuscitation, 133 children were eligible for this study. Of the 132 parents who were successfully contacted, 107 agreed to participate. The MABC was tested on 102 candidates and five defaulted. The results of seven participants were rejected as they were uncooperative, making MABC scoring unreliable. Of the 133 eligible candidates, statistical analysis was performed on results from 95 (71.4%), with 63 males and 32 females and a mean age of 7.8 years. The Figure summarises the workflow of this study and the candidate recruitment process.
 

Figure. Workflow of the study and recruitment of participants
 
Table 1 shows the results of MABC performed on the 95 participants. Based on the TIS, three motor performance groups were identified: no motor problem (n=63; mean TIS=4.75 with 95% confidence interval [CI] of 4.1-5.4), borderline motor problem (n=15; mean TIS=11.53 with 95% CI of 11.0-12.1), and definite motor problem (n=17; mean TIS=18.53 with 95% CI of 16.6-20.5). Using the 15th percentile of motor performance in MABC as a cut-off, the prevalence of motor problems in this group of children with ADHD was 33.7% (95% CI, 24.2%-43.2%).
 

Table 1. Results of MABC comparing mean and standard deviation of TIS among the three motor performance groups
 
Table 2 shows the baseline information about the two groups with motor problems (borderline and definite) and the group with no motor problems and includes sex, perinatal history, socio-economic background, drug treatment, and previous motor training. There was no statistical difference between these two groups, except for a history of receiving motor training at a younger age (P=0.002).
 

Table 2. Comparison of sex, and perinatal, social and treatment characteristics of participants with and without motor problems
 
Two carers who accompanied a child to the study session could not read Chinese, therefore 93 completed DCDQ-C were analysed. The questionnaire identified 71 and 22 participants with no motor problems and suspected motor problems, respectively, but none was found to have definite DCD (>40% chance) [Table 3]. For correlation between MABC and DCDQ-C, the Kappa value was 0.228 indicating a low agreement between the two instruments (P=0.023). Using MABC as a standard measure for motor performance, sensitivity and specificity of DCDQ-C on identification of DCD was 37.5% and 83.6%, respectively. The positive predictive value of DCDQ-C was 54.5% and the negative predictive value was 71.8%. Thus DCDQ-C could quite reliably exclude DCD but was rather insensitive when identifying motor problems in children with ADHD in Hong Kong.
 

Table 3. Results of DCDQ-C and its agreement with MABC
 
Discussion
In this clinic sample of children with ADHD, the results of MABC revealed that 15.8% had borderline and 17.9% had definite motor problems. Overseas studies have often used the 15th percentile of TIS in MABC as the cut-off for identification of DCD.17 19 25 By using the same standard here, participants who belonged to the borderline and definite motor problem groups could be potentially diagnosed as having DCD. A diagnosis of DCD, however, requires confirmation of motor problems and impaired daily functions. Initially, DCDQ-C was intended to provide the impairment criteria for a DCD diagnosis but it could not be reliably applied here due to the significant lack of agreement with MABC in this study sample. We therefore estimated that DCD may occur in up to one third of patients with ADHD, a figure that is comparable with the literature.
 
In our clinical experience, motor difficulties are usually not a common presenting symptom during a medical consultation for ADHD. There are a few possible reasons why motor performance may be overlooked. First, the parents of these children are often overwhelmed by the symptoms of ADHD and attribute all difficulties to a single diagnosis. In addition, it may be difficult for parents to differentiate symptoms related to motor impairment from those related to ADHD, for examples, bumping into objects, poor postural stability, and illegible handwriting. Second, cultural influences may play a part. Hong Kong children adopt a very sedentary lifestyle and are probably the most physically inactive students in the world.27 Sports skills are not essential for most local children in the school and social environment. Third, there was less diversity for participation in leisure activities among ADHD children compared with their normal peers.28 Children with ADHD were encouraged to participate in tutorial lessons to support academic achievement, rather than other non–academic-related activities. They spent many hours after school every day for completion of homework and revision, leaving little time for sports or other leisure activities. Limited participation in physical activities masks underlying motor problems and conversely means any motor talent goes unrecognised. Therefore, clinicians who manage children with ADHD should be aware of these issues and need to consider motor problems (or DCD) as a factor that causes persistent impairment, especially when the symptoms of ADHD improve.
 
The prevalence of DCD in children born extremely premature (<29 weeks) or with extremely low birth weight (<1000 g) has been reported to be high, which was around 42% in one study.29 A recent meta-analysis of studies in school-aged children with very low birth weight (VLBW)/very preterm reported an odds ratio (OR) of up to 8.66.30 In our study, 6.5% and 10.8% of children had a history of prematurity or low birth weight, respectively, but none was born very preterm or with VLBW. It was therefore not surprising to see no significant difference between the groups with and without motor problems in terms of maturity and birth weight. Local figures published in 1998 show that the incidence of very preterm delivery (<34 weeks) and very/extremely low birth weight (<1500 g) was 2.22% and 1.25%, respectively.31 The sample size of the current study was simply not large enough to include these children.
 
There are studies that show improved motor performance and quality of life in children with co-morbid ADHD and DCD following treatment with methylphenidate.32 33 34 As shown in Table 2, a lower prevalence of motor problems was found in children who were prescribed regular medication or who had taken medication prior to the assessment (OR=0.6 and 0.5, respectively) but this was not statistically significant (P=0.28 and 0.18, respectively). This may be because we recruited some children who had been recently diagnosed with ADHD and medication was not yet optimised at the time of MABC testing, or simply because of a lack of statistical power due to the small number of subjects. To better understand this issue, further studies should be carried out to specifically examine the effect of ADHD medication on motor performance.
 
Of the 15 participants who had received previous motor training, 11 had motor problems. This group was quite heterogeneous and, interestingly, many parents could not recall the exact reason for the motor training. As mentioned before, DCD is a relatively stable condition and intervention should focus on specific motor skills. Previous training does not preclude children from having future motor problems as demand for activities, such as handwriting and participation in sports, increases when children progress from preschool to primary school. It is therefore vital to determine whether motor skills are at an age-appropriate level for both academic and extracurricular activities and provide task-specific training whenever indicated.
 
Although the DCDQ-C has been validated for use in Taiwan, which is a Chinese community similar to Hong Kong, the questionnaire was not appropriate for local Hong Kong children. This demonstrates the need to be cautious when adopting an assessment tool from overseas without local validation, even from an area with comparable cultural and socio-economic background. Furthermore, a questionnaire cannot replace detailed history taking in clinical practice that is indispensable when making a diagnosis of neurodevelopmental disorders, such as ADHD and DCD.
 
Since DCDQ-C could not reliably reflect motor performance in this group of children, the degree of impairment in daily activities was not adequately assessed to make a definite diagnosis of DCD. A local study of the prevalence of DSM-IV disorders in Chinese adolescents pointed out that figures would be overestimated if the impairment criteria were not taken into account.35 Although MABC used alone would probably overdiagnose DCD by not considering the impairment factors, it is worth noting that 17.9% of our study candidates had definite motor problems. This is actually below the 5th percentile of the general population. Thus the magnitude of motor difficulties is substantial and motor problems (with or without a diagnosis of DCD) should not be overlooked in children with ADHD.
 
Limitations of this study
There are some limitations to this study. Parents who perceived their children to have motor problems were more keen to participate, leading to a selection bias in the recruitment of children. Although all children were diagnosed with ADHD, they were not a homogeneous group. They were diagnosed by different physicians and were not at a uniform stage of drug treatment. Even though MABC is a widely used tool in Hong Kong, the lack of a local norm might still affect the validity of this study.
 
Conclusions
Motor problems in children with ADHD are as common in Hong Kong as in other countries and DCD may have been present in up to 33.7% of this clinic sample. Acknowledgement of their own strength and weakness will enable patients to better plan future goals. Provision for assessment and management of DCD and other motor problems should be a fundamental part of a comprehensive programme to manage ADHD.
 
References
1. Leung PW, Luk SL, Ho TP, Taylor E, Mak FL, Bacon-Shone J. The diagnosis and prevalence of hyperactivity in Chinese schoolboys. Br J Psychiatry 1996;168:486-96. Crossref
2. Larson K, Russ SA, Kahn RS, Halfon N. Patterns of comorbidity, functioning, and service use for US children with ADHD, 2007. Pediatrics 2011;127:462-70. Crossref
3. Gillberg C, Gillberg IC, Rasmussen P, et al. Co-existing disorders in ADHD—implications for diagnosis and intervention. Eur Child Adolesc Psychiatry 2004;13 Suppl 1:I80-92. Crossref
4. Licari M, Larkin D. Increased associated movements: Influence of attention deficits and movement difficulties. Hum Mov Sci 2008;27:310-24. Crossref
5. Stray LL, Stray T, Iversen S, Ruud A, Ellertsen B, Tønnessen FE. The Motor Function Neurological Assessment (MFNU) as an indicator of motor function problems in boys with ADHD. Behav Brain Funct 2009;5:22. Crossref
6. Brossard-Racine M, Majnemer A, Shevell M, Snider L, Bélanger SA. Handwriting capacity in children newly diagnosed with attention deficit hyperactivity disorder. Res Dev Disabil 2011;23:2927-34. Crossref
7. Shen IH, Lee TY, Chen CL. Handwriting performance and underlying factors in children with attention deficit hyperactivity disorder. Res Dev Disabil 2012;33:1301-9. Crossref
8. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). 5th ed. Washington DC: American Psychiatric Association; 2013.
9. Missiuna C, Cairney J, Pollock N, et al. A staged approach for identifying children with developmental coordination disorder from the population. Res Dev Disabil 2011;32:549-59. Crossref
10. Tsiotra GD, Flouris AD, Koutedakis Y, et al. A comparison of developmental coordination disorder prevalence rates in Canadian and Greek children. J Adolesc Health 2006;39:125-7. Crossref
11. Kadesjö B, Gillberg C. Developmental coordination disorder in Swedish 7-year-old children. J Am Acad Child Adolesc Psychiatry 1999;38:820-8. Crossref
12. Wright HC, Sugden DA. A two-step procedure for the identification for children with developmental coordination disorder in Singapore. Dev Med Child Neurol 1996;38:1099-105. Crossref
13. Cairney J, Veldhuizen S, Szatmari P. Motor coordination and emotional-behavioral problems in children. Curr Opin Psychiatry 2010;23:324-9. Crossref
14. Losse A, Henderson SE, Elliman D, Hall D, Knight E, Jongmans M. Clumsiness in children—do they grow out of it? A 10-year follow-up study. Dev Med Child Neurol 1991;33:55-68. Crossref
15. Sugden DA, editor. Leeds consensus statement: developmental coordination disorder as a specific learning difficulty. In: ESRC Research Seminar Series 2004-2005. Leeds (UK): Economic & Social Research Council; 2006.
16. Polatajko HJ, Cantin, N. Developmental coordination disorder (dyspraxia): an overview of the state of the art. Semin Pediatr Neurol 2005;12:250-8. Crossref
17. Watemberg N, Waiserberg N, Zuk L, Lerman-Sagie T. Developmental coordination disorder in children with attention-deficit-hyperactivity disorder and physical therapy intervention. Dev Med Child Neurol 2007;49:920-5. Crossref
18. Pitcher TM, Piek JP, Hay DA. Fine and gross motor ability in males with ADHD. Dev Med Child Neurol 2003;45:525-35. Crossref
19. Tseng MH, Howe TH, Chuang IC, Hsieh CL. Cooccurrence of problems in activity level, attention, psychosocial adjustment, reading and writing in children with developmental coordination disorder. Int J Rehabil Res 2007;30:327-32. Crossref
20. Rasmussen P, Gillberg C. Natural outcome of ADHD with developmental coordination disorder at age 22 years: a controlled, longitudinal, community-based study. J Am Acad Child Adolesc Psychiatry 2000;39:1424-31. Crossref
21. Henderson SE, Sugden DA. Movement assessment battery for children. London: Psychological Corporation; 1992.
22. Croce RV, Horvat M, MaCarthy E. Reliability and concurrent validity of the movement assessment battery for children. Percept Mot Skills 2001;93:275-80. Crossref
23. Chow SM, Henderson SE. Interrater and test-retest reliability of the Movement Assessment Battery for Chinese preschool children. Am J Occup Ther 2003;57:574-7. Crossref
24. Wilson BN, Kaplan BJ, Crawford SG, Campbell A, Deway D. Reliability and validity of a parent questionnaire on childhood motor skills. Am J Occup Ther 2000;54:484-93. Crossref
25. Schoemaker MM, Flapper B, Verheij NP, Wilson BN, Reinders-Messelink HA, de Kloet A. Evaluation of the Developmental Coordination Disorder Questionnaire as a screening instrument. Dev Med Child Neurol 2006;48:668-73. Crossref
26. Tseng MH, Fu CP, Wilson BN, Hu FC. Psychometric properties of a Chinese version of the Developmental Coordination Disorder Questionnaire in community-based children. Res Dev Disabil 2010;31:33-45. Crossref
27. Macfarlane D. Children’s physical activity patterns and the implications for health. In: Johns DP, Lindner KJ, editors. Physical activity and health of Hong Kong youth. Hong Kong: The Chinese University Press; 2006: 67-87.
28. Shimoni M, Engel-Yeger B, Tirosh E. Participation in leisure activities among boys with attention deficit hyperactivity disorder. Res Dev Disabil 2010;31:1234-9. Crossref
29. Goyen TA, Lui K. Developmental coordination disorder in “apparently normal” schoolchildren born extremely preterm. Arch Dis Child 2009;94:298-302. Crossref
30. Edwards J, Berube M, Erlandson K, et al. Developmental coordination disorder in school-aged children born very preterm and/or at very low birth weight: a systematic review. J Dev Behav Pediatr 2011;32:678-87. Crossref
31. Leung TN, Roach VJ, Lau TK. Incidence of preterm delivery in Hong Kong Chinese. Aust NZ J Obstet Gynaecol 1998;38:138-41. Crossref
32. Bart O, Podoly T, Bar-Haim Y. A preliminary study on the effect of methylphenidate on motor performance in children with comorbid DCD and ADHD. Res Dev Disabil 2010;31:1443-7. Crossref
33. Flapper BC, Schoemaker MM. Effects of methylphenidate on quality of life in children with both developmental coordination disorder and ADHD. Dev Med Child Neurol 2008;50:294-9. Crossref
34. Stray LL, Stray T, Iversen S, Ruud A, Ellertsen B. Methylphenidate improves motor functions in children diagnosed with hyperkinetic disorder. Behav Brain Funct 2009;5:21. Crossref
35. Leung PW, Hung SF, Ho TP, et al. Prevalence of DSM-IV disorders in Chinese adolescents and the effects of an impairment criterion: a pilot community study in Hong Kong. Eur Child Adoles Psychiatry 2008;17:452-61. Crossref

Hysteroscopic intrauterine morcellation of submucosal fibroids: preliminary results in Hong Kong and comparisons with conventional hysteroscopic monopolar loop resection

Hong Kong Med J 2016 Feb;22(1):56–61 | Epub 8 Jan 2016
DOI: 10.12809/hkmj154600
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Hysteroscopic intrauterine morcellation of submucosal fibroids: preliminary results in Hong Kong and comparisons with conventional hysteroscopic monopolar loop resection
Menelik MH Lee, FHKCOG, FHKAM (Obstetrics and Gynaecology); Tomoko Matsuzono, FHKCOG, FHKAM (Obstetrics and Gynaecology)
Department of Obstetrics and Gynaecology, Queen Elizabeth Hospital, Jordan, Hong Kong
 
Corresponding author: Dr Menelik MH Lee (menelik.lee@gmail.com)
 
 Full paper in PDF
 
Click here to watch a video clip showing hysteroscopic intrauterine morcellation of submucosal fibroids
 
Abstract
Introduction: Hysteroscopic management of submucosal fibroids using the intrauterine morcellation technique is increasingly being adopted worldwide but no literature concerning its safety and efficacy is available within our local population. We aimed to determine the safety, satisfaction, and efficiency of hysteroscopic intrauterine morcellation of submucosal fibroids, and to compare this technique with conventional hysteroscopic monopolar loop resection to identify its potential benefits.
 
Methods: All cases of hysteroscopic resection of submucosal fibroids performed in a regional hospital in Hong Kong between 1 January 2011 and 31 December 2014, either by hysteroscopic intrauterine morcellation (MyoSure; Hologic, Bedford [MA], US) or conventional hysteroscopic monopolar loop resection, were selected and case notes reviewed. Technical details such as fibroid size, operating time, fluid deficit, operative complications, patient satisfaction, and improvement in haemoglobin level were analysed and compared between the hysteroscopic intrauterine morcellation and the conventional groups. All statistical results were calculated using the Mann-Whitney test.
 
Results: During the 3-year period, 29 cases of submucosal fibroids were managed by hysteroscopic surgery. Conventional hysteroscopic monopolar loop resection was performed in 14 patients and another 15 underwent hysteroscopic intrauterine morcellation with the MyoSure device. At 3-month follow-up, there was no significant difference in overall patient satisfaction (84.6% for conventional method vs 93.3% for hysteroscopic intrauterine morcellation method; P=0.841). Both techniques showed improvement in haemoglobin level at 3 months but without significant difference between the two groups: +21.5 g/L (+1 to +44 g/L) for conventional group and +17.0 g/L (-4 to +40 g/L) for hysteroscopic intrauterine morcellation group (P=0.235). Both techniques achieved 100% satisfaction if the submucosal fibroid had over 60% of its contents protruding into the uterine cavity. The operating time was significantly reduced for the hysteroscopic intrauterine morcellation technique (mean, 36.6 mins vs 53.6 mins in conventional hysteroscopic monopolar loop resection; P=0.005), particularly in those whose fibroids were ≤3.0 cm (mean, 27.6 mins vs 53.4 mins; P=0.019).
 
Conclusions: This retrospective review suggests that hysteroscopic intrauterine morcellation of submucosal fibroids is a safe and effective method in the management of menorrhagia in Chinese women. Preliminary data suggest this technique to be less time-consuming, especially when managing fibroids of ≤3.0 cm.
 
New knowledge added by this study
  • Hysteroscopic intrauterine morcellation of submucosal fibroids is as effective as conventional hysteroscopic resection of submucosal fibroids. The operating time is shorter than the conventional technique, particularly when the submucosal fibroid is ≤3.0 cm.
Implications for clinical practice or policy
  • Reduced operating time for management of submucosal fibroids will enable more such procedures to be performed within a set limit of time. This may reduce waiting time for surgery and improve overall patient satisfaction, particularly in a public hospital setting.
 
 
Introduction
Submucosal fibroids are a common cause of heavy menstrual bleeding.1 Traditionally, conventional hysteroscopic monopolar loop resection of such fibroids represents the surgical treatment of choice (Fig 1a). Hysteroscopic management of such fibroids using the intrauterine morcellation (IUM) technique (eg MyoSure, Hologic, Bedford, US; Truclear, Smith & Nephew Inc, Andover, US; Fig 1b), however, is increasingly being used worldwide but no literature concerning its safety and efficacy is available within our local population.
 

Figure 1. (a) Conventional hysteroscopic loop resection of submucosal fibroid, and (b) intrauterine morcellation of submucosal fibroid
 
Our hospital is one of the first to introduce the use of the hysteroscopic IUM device in Hong Kong. This preliminary review looks at the safety, satisfaction, and efficiency of such technique when performed within our hospital and within a Chinese population. Comparisons were made between the conventional hysteroscopic monopolar loop resection technique and IUM technique with the aim of identifying the potential benefits that have been described by previous studies worldwide.
 
Methods
All cases of hysteroscopic resection of submucosal fibroids performed at Queen Elizabeth Hospital, Hong Kong, between 1 January 2011 and 31 December 2014, either by IUM (MyoSure) or conventional hysteroscopic monopolar loop resection, were selected and the case notes were reviewed. Choice of method was dependant on the operator but all cases using the IUM method were performed between the years 2013 and 2014 after its introduction in our department. Patients were identified from the Clinical Data Analysis and Reporting System through specialised coding. Detailed technical aspects of both operations were collected using a self-designed proforma with information collected via the Clinical Management System computerised record system. Analysis and comparison of technical details such as fibroid size, operating time, fluid deficit, operative complications, and patient satisfaction were made between the IUM and the conventional groups. Fibroid size was measured via preoperative abdominal and/or vaginal fluid–infused sonography, and confirmed during diagnostic hysteroscopy prior to resection. Those cases with prolonged operating time due to multiple operations for other indications or complications were excluded from final analysis. In our hospital, monopolar energy was used during conventional loop resection, hence glycine was used as the distending medium. With the IUM technique, since no energy source was required during morcellation, normal saline was used as the distending medium. Operating time was measured from the time the patient was anaesthetised to completion of the operation. Hence operating time included the time required to position the patient, cleaning, draping, and the time for setting up equipment. In the IUM system, fluid deficit calculations were accurately measured by the Aquilex Fluid Control System (Hologic, Bedford, US). With the conventional method, deficit calculations were based on the amount of fluid entered minus the amount of fluid suctioned and retrieved intra-operatively. Postoperatively, a satisfactory outcome was considered when the patient subjectively reported reduced menstrual bleeding and considered the operation to have improved menstrual symptoms at 3 months’ follow-up. Pre- and post-operative haemoglobin levels within 3 months of follow-up and differences between them were also investigated. All results were statistically analysed using the Statistical Package for the Social Sciences (Windows version 22.0; SPSS Inc, Chicago [IL], US). Statistical significance was represented by P values that were calculated using the Chi squared test for patient satisfaction and Mann-Whitney test for the remaining tests. P values of <0.05 were considered statistically significant for all of the data.
 
The research protocol was approved by the Ethics Committee of the study hospital. The patients were not required to undergo additional tests or visits, and therefore consent from the patients was not required.
 
Results
During the study period, 29 patients with submucosal fibroids were treated with hysteroscopic surgery at Queen Elizabeth Hospital, Hong Kong. Conventional hysteroscopic monopolar loop resection was performed in 14 patients and IUM with the MyoSure device in 15.
 
Among those who underwent surgery using the conventional technique, one patient experienced a uterine perforation that required surgical repair and was excluded from data analysis. No complications occurred in any patient in the IUM group. Two patients from the IUM group and one from the conventional group were excluded due to the need for multiple procedures including endometrial ablation or laparoscopic ovarian cystectomy during the same operation. The remaining patients were all well and discharged the day after their operation regardless of the hysteroscopic technique used.
 
The mean size of fibroids resected was 3.3 cm (range, 2-5 cm; median, 3 cm) for the conventional technique and 3.5 (range, 1.5-6 cm; median, 3 cm) for the IUM group, although they were not significantly different (P=0.470). The operating time was significantly shorter using the IUM technique (mean, 36.6 mins; range, 17-72 mins) compared with the conventional technique (mean, 53.6 mins; range, 39-102 mins) [P=0.005]. Total fluid deficit, however, was significantly greater when using the IUM technique (1005 mL; range, 40-2600 mL) compared with the conventional technique (225 mL; range, 0-1000 mL) [P=0.003; Table 1]. No patient in either group developed any complication associated with excessive fluid absorption.
 

Table 1. Comparison of conventional hysteroscopic monopolar loop resection technique with the hysteroscopic intrauterine morcellation technique
 
At 3 months’ follow-up, there was no significant difference in the overall outcome between the two groups: 84.6% of patients who underwent the conventional method versus 93.3% of those who underwent IUM were pleased with their overall outcome (P=0.841). Within the conventional group, the mean preoperative haemoglobin level was 95.4 g/L (range, 81-121 g/L). The mean postoperative haemoglobin level of nine patients who returned with blood results was 119 g/L (range, 91-137 g/L). The difference between pre- and post-haemoglobin level in the conventional resection group was +21.5 g/L (range, +1 to +44 g/L). In the IUM group, two patients were excluded from this part of the analysis as the indication for surgery was post-menopausal bleeding, not menorrhagia. For the remaining 11 patients, the mean preoperative haemoglobin level was 99.1 g/L (range, 62-120 g/L). The mean postoperative haemoglobin level among the nine patients in the IUM group who returned with results was 108.8 g/L (range, 90-124 g/L). The mean improvement in haemoglobin level was +17.0 g/L (range, -4 to +40 g/L). There was no significant difference between the change in haemoglobin level pre- and post-operatively between the IUM and conventional groups (P=0.235, Mann-Whitney test; Fig 2).
 

Figure 2. Change in haemoglobin level in pre- and post-hysteroscopic myomectomy
 
For both techniques, each group had two patients in whom fibroid protrusion was <60% within the uterine cavity, with the remaining patients all having >60% protrusion. Of those with <60% protrusion, each group had one (50%) of two patients who was satisfied with the procedure. In those with >60%, 100% of patients were satisfied (n=10 for conventional group and n=11 for IUM group; Table 1).
 
The data were further divided into groups of small and large fibroids with the cut-off of 3.0 cm to differentiate the two groups. With regard to small fibroids of ≤3.0 cm, the mean duration of procedure was significantly reduced among those using the IUM system (mean, 27.6 mins vs 53.4 mins; P=0.019), but fluid deficit was significantly greater (mean, 634.4 mL using IUM vs 80 mL using conventional technique; P=0.019; Table 2). There was no statistical difference in overall satisfaction for the two methods. When the procedure involved larger fibroids (>3.0 cm), there was no difference in operating time (P=0.527) or patient satisfaction (P=0.788) between the two methods but considerably more fluid deficit was again generated using the IUM system (mean, 328.6 mL using conventional technique vs 1839 mL using IUM; P=0.024; Table 2).
 

Table 2. Comparison of small and large fibroids using the two techniques
 
When we reviewed the data for all patients who underwent submucosal fibroid resection using the IUM technique, the procedural time was significantly reduced, while fluid deficit had a lowering trend with smaller fibroids compared with larger fibroids. Regardless of fibroid size, however, there was no significant difference in overall patient satisfaction (P=0.710; Table 3).
 

Table 3. Comparison of outcome for fibroids of ≤3 cm with fibroids of >3 cm
 
Discussion
Hysteroscopic surgery using hysteroscopic monopolar loop resection has always been the conventional method to resect submucosal fibroids. Recently, hysteroscopic intrauterine morcellators such as MyoSure have been increasingly used as an alternative. Reports have suggested that such techniques to remove submucosal fibroids and polyps are as effective as the conventional hysteroscopic resection while fibroid symptom–related quality of life is improved and the recurrence of endometrial polyp reduced.2 3 Reports have suggested that IUM may be associated with adverse complications such as bowel damage, hysterectomy, uterine perforation, and pelvic infection, but an adverse event complication rate of <1% for hysteroscopic morcellation technique is lower than that for conventional electrocautery.4 Other reports have suggested additional benefits such as reduction in instances of uterine perforation, cervical dilation, thermal bowel injury, and intrauterine adhesions when comparing the use of such a device with conventional methods. Operating time, fluid absorption, and the need for a second operation may also be reduced.5 6 7
 
Despite its increasing popularity worldwide, the IUM technique remains a relatively new concept within the Chinese population. In this retrospective review, among the 13 patients who underwent IUM for the management of submucosal fibroids, none developed intra-operative complications or postoperative complications that could lead to an extended hospital stay.
 
Excessive fluid deficit and subsequent fluid absorption remains a concern with hysteroscopic surgery. Electrolyte imbalance as well as cardiac collapse and death can occur in severe cases. This is more likely if hypotonic glycine is used as the uterine distention medium: normal saline reduces such risks.8 In our study, the IUM technique was associated with significantly higher fluid deficit regardless of fibroid size being morcellated. One explanation of this is the fast fluid pumping device that is used with the IUM. High fluid flow within the cavity is important to maintain a clear view during the morcellation procedure and to maintain a high intrauterine pressure to prevent bleeding during the myoma morcellation process. Normal saline was used in the IUM technique instead of glycine (which was used in conventional technique). Despite its significantly higher fluid deficit, no patients experienced any associated complications.9 In both techniques and regardless of the size of the submucosal fibroids, the total amount of fluid deficit remained within or just above the maximum limit of 2500 mL of saline or 1000 mL glycine set by AAGL (American Association of Gynecologic Laparoscopists).10 One patient who underwent IUM had 100 mL (2600 mL) above the recommended maximum fluid deficit limit. This was due to the additional time required to completely resect a large 6-cm fibroid and avoided a second operation. This patient recovered well and did not have any complications. Hence despite the excessive fluid deficit, IUM remains a safe procedure.
 
When the technicalities of both techniques were compared, the total time required for the operation was significantly reduced when the IUM technique was used. This was particularly significant if the fibroid size was ≤3 cm but not if the fibroid was >3 cm; 3 cm was chosen as the cut-off between small and large fibroid as previous studies have already shown morcellation of submucosal fibroids of ≤3.0 cm to be safe and effective.11 12 One of the main reasons for the reduced operating time was the constant suction mechanism at the morcellator blade of the IUM device. This suction constantly removes resected material to maintain a clear view of the uterine cavity. The material is collected directly into the Aquilex Fluid Control System that is required for the MyoSure IUM device. As a result, unlike the conventional method, the need to constantly remove fibroid chips during the procedure is avoided and hence operating time is reduced. With the larger-sized fibroids, the time needed to morcellate the large fibroid will still be considerable so there is a smaller difference compared with conventional methods. One may suggest that the reduced time difference may be due to the experience of the operator, as the IUM is a new technique within our department. Previous study has suggested that both experienced operators and training doctors favour the morcellation technique and the learning curve is minimal.12 Familiarisation with the setup of the system, the technique of hysteroscopic morcellation, management of a loose cervix that can cause fluid leakage as well as fluid control to maintain haemostasis versus a clear visual field remain a challenge. Given more experience with the IUM system, reduced operating times will become more significant. This proposed reduction in operating time will benefit both patient (eg anaesthetic exposure) and the institution (reduced waiting time for operation). Other potential benefits described by other studies such as reduced uterine perforation, cervical dilation, thermal bowel injury, and intrauterine adhesions5 6 7 cannot be determined given the small number of cases performed so far. Nonetheless, there has been one case of uterine and subsequent bowel perforation with the conventional technique and none with the IUM technique in this study.
 
Patient satisfaction in terms of reduced or improved menstrual symptoms showed no significant difference at 3 months’ follow-up when the IUM technique was compared with the conventional technique. Haemoglobin levels improved following hysteroscopic resection of fibroid regardless of the technique used, with no significant difference in improvement between the two groups. Patient satisfaction again showed no statistically significant difference regardless of the size of the submucosal fibroids, suggesting that the IUM technique can be applied to large fibroids. If cases were carefully selected and only submucous fibroids with less than 50% of the contents intramural were surgically resected as suggested by Di Spiezio Sardo et al,7 the satisfaction rate would remain the same between the two techniques, that is both achieved 100% satisfaction.
 
Limitations
Although results regarding safety, effectiveness, and benefits of the IUM technique appear to be promising, this study remains a preliminary overview as the strength of the evidence is limited by the small number of cases. The limited sample may not be representative of the general population and the two groups using different techniques may not be comparable. As a result of the small numbers, this in itself and the non-parametric test used due to the lack of numbers reduce its statistical power. Limitations also arise when the skill of the surgeon varies and the total operating time incorporates the time for preparation and setting up for the procedure. The latter may cause discrepancy in the actual total operating time. Further prospective studies or randomised controlled trials with more subjects, a limited number of surgeons with similar hysteroscopic skills, and a more accurate surgical time measurement would be more beneficial. More standardised outcome measures using a combination of haemoglobin improvement, menstrual chart, and/or patient satisfaction surveys may also improve the strength of future studies.
 
Conclusions
This retrospective review suggests that hysteroscopic IUM is a safe and effective technique for management of menorrhagia secondary to submucosal fibroid. Preliminary data suggest the technique to be as safe and effective as, and less time-consuming than, conventional techniques. Maximum benefit would be achieved if submucosal fibroid cases for IUM resection were carefully selected, with particular reference to patients in whom >50% of the fibroid protrudes into the uterine cavity and where maximum diameter is ≤3 cm.
 
Declaration
No conflicts of interest were declared by authors.
 
References
1. Puri K, Famuyide AO, Erwin PJ, Stewart EA, Laughlin-Tommaso SK. Submucosal fibroids and the relation to heavy menstrual bleeding and anemia. Am J Obstet Gynecol 2014;210:38.e1-7. Crossref
2. Rubino RJ, Lukes AS. Twelve-month outcomes for patients undergoing hysteroscopic morcellation of uterine polyps and myomas in an office or ambulatory surgical center. J Minim Invasive Gynecol 2015;22:285-90. Crossref
3. AlHilli MM, Nixon KE, Hopkins MR, Weaver AL, Laughlin-Tommaso SK, Famuyide AO. Long-term outcomes after intrauterine morcellation vs hysteroscopic resection of endometrial polyps. J Minim Invasive Gynecol 2013;20:215-21. Crossref
4. Haber K, Hawkins E, Levie M, Chudnoff S. Hysteroscopic morcellation: review of the manufacturer and user facility device experience (MAUDE) database. J Minim Invasive Gynecol 2015;22:110-4. Crossref
5. Wamsteker K, Emanuel MH, de Kruif JH. Transcervical hysteroscopic resection of submucous fibroids for abnormal uterine bleeding: results regarding the degree of intramural extension. Obstet Gynecol 1993;8:736-40.
6. Stamatellos I, Apostolides A, Tantis A, Stamatopoulos P, Bontis J. Fertility rates after hysteroscopic treatment of submucous fibroids depending on their type. Gynecol Surg 2006;3:206-10. Crossref
7. Di Spiezio Sardo A, Mazzon I, Bramante S, et al. Hysteroscopic myomectomy: a comprehensive review of surgical techniques. Hum Reprod Update 2008;14:101-19. Crossref
8. Tarneja P, Tarneja VK, Duggal BS. Complications of hysteroscopy surgery. Medical Journal Armed Forces India 2002;58:331-4. Crossref
9. Isaacson KB, Olive DL. Operative hysteroscopy in physiologic distention media. J Am Assoc Gynecol Laparosc 1999;6:113-8. Crossref
10. AAGL Advancing Minimally Invasive Gynecology Worldwide, Munro MG, Storz K, Abbott JA, et al. AAGL Practice Report: Practice Guidelines for the Management of Hysteroscopic Distending Media: (Replaces Hysteroscopic Fluid Monitoring Guidelines. J Am Assoc Gynecol Laparosc. 2000;7:167-168.). J Minim Invasive Gynecol 2013;20:137-48. Crossref
11. Hamerlynck TWO, Dietz V, Schoot BC. Clinical implementation of the hysteroscopic morcellator for the removal of intrauterine myomas and polyps. A retrospective descriptive study. Gynecol Surg 2011;8:193-6. Crossref
12. Emanuel MH, Wamsteker K. The Intra Uterine Morcellator: a new hysteroscopic operating technique to remove intrauterine polyps and myomas. J Minim Invasive Gynecol 2005;12:62-6. Crossref

Acute carbon monoxide poisoning in a regional hospital in Hong Kong: historical cohort study

Hong Kong Med J 2016 Feb;22(1):46–55 | Epub 15 Jan 2016
DOI: 10.12809/hkmj144529
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Acute carbon monoxide poisoning in a regional hospital in Hong Kong: historical cohort study
MY Chan, FHKCEM, FHKAM (Emergency Medicine)1; Thomas TS Au, FHKCEM, FHKAM (Emergency Medicine)1; KS Leung, FHKCEM, FHKAM (Emergency Medicine)1; WW Yan, FHKAM (Medicine)2
1 Accident and Emergency Department, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
2 Department of Intensive Care Unit, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
 
Corresponding author: Dr MY Chan (odin@ha.org.hk)
 
 Full paper in PDF
Abstract
Objectives: This study aimed to describe the clinical profiles of all patients with carbon monoxide poisoning admitted to a regional hospital in order to enhance the vigilance of health care professionals for delayed neurological sequelae associated with carbon monoxide poisoning and to identify the prognostic factors associated with their development. This study also aimed to assess the impact of hyperbaric oxygen therapy on the development of delayed neurological sequelae in these patients.
 
Methods: This was a historical cohort study in which all patients with a diagnosis of carbon monoxide poisoning managed in a regional hospital in Hong Kong from 12 February 2003 to 8 November 2013 were recruited. Main outcome measures included delayed neurological sequelae.
 
Results: Of the clinical profiles of 93 patients analysed, 24 patients received hyperbaric oxygen therapy and did not develop delayed neurological sequelae. Seven patients who did not receive hyperbaric oxygen therapy developed delayed neurological sequelae. Comparison of groups with and without delayed neurological sequelae (excluding hyperbaric oxygen therapy–treated patients) revealed that loss of consciousness (P=0.038), Glasgow Coma Scale score of 3 (P=0.012), elevated troponin level (P<0.001), higher creatine kinase level (P=0.008), and intubation requirement (P=0.007) were possible prognostic factors for the development of delayed neurological sequelae.
 
Conclusion: Although not statistically significant, this study showed a 100% protective effect of hyperbaric oxygen therapy against development of severe delayed neurological sequelae in patients with severe carbon monoxide poisoning. Further study with better study design is warranted. Loss of consciousness, low Glasgow Coma Scale score, intubation requirement, elevated troponin and higher creatine kinase levels were possible prognostic factors for development of delayed neurological sequelae in patients with severe carbon monoxide poisoning. A well-defined treatment protocol, appropriate follow-up duration and neuropsychiatric tests together with a hospital-based hyperbaric chamber are recommended for management of patients with severe carbon monoxide poisoning.
 
New knowledge added by this study
  • Loss of consciousness, low Glasgow Coma Scale score, intubation requirement, and elevated troponin and creatine kinase levels were possible prognostic factors for development of delayed neurological sequelae in patients with severe carbon monoxide poisoning.
  • Presentation of neurological sequelae can be delayed from a few months to a year.
Implications for clinical practice or policy
  • A hospital-based hyperbaric oxygen chamber is recommended to decrease the burden of off-site therapy for patients with severe carbon monoxide poisoning and to facilitate timely treatment in a safe environment in Hong Kong.
  • A well-defined treatment protocol with adequate follow-up and neuropsychiatric tests are recommended for patients with severe carbon monoxide poisoning.
 
 
Introduction
Carbon monoxide (CO) poisoning was not common in Hong Kong prior to 1998. The first reported case of CO poisoning from suicidal charcoal burning occurred in 1998 in Hong Kong. A middle-aged woman who was a chemical engineer invented this method of suicide that became the third most common method in Hong Kong within 2 months of her death and the associated publicity.1 To date, suicidal charcoal burning remains the top cause of suicidal death in this crowded and stressful city.
 
Victims of CO poisoning are sent to either the mortuary or public hospitals in Hong Kong. Most patients who are admitted to hospitals eventually survive with supportive management but there is no standard treatment protocol. Treatment regimens varied in different hospitals at different times. Cases of delayed neurological sequelae (DNS) secondary to CO poisoning are well reported in the literature.2 3 4 5 6 In a Cochrane review in 2011, it was stated “It is possible that some patients, particularly those with more severe poisoning, may derive benefit from [hyperbaric oxygen] treatment, but this remains unproven.”7 Hyperbaric oxygen therapy (HBOT) is now a standard treatment option in many developed countries and China for selected patients with severe CO poisoning.
 
According to Lam et al in 2006,8 the incidence of DNS in Hong Kong was 3.4%, which was much lower than other reported rates of 10% to 30%.2 3 4 5 6 7 The overall incidence of DNS is likely to have been underdiagnosed and under-reported in Hong Kong because of a lack of detailed neurological examination and neuropsychiatric tests during acute management and follow-up sessions.
 
Pamela Youde Nethersole Eastern Hospital (PYNEH) has been one of the pioneer hospitals to support HBOT for CO poisoning in Hong Kong. The lack of a hospital-based hyperbaric oxygen chamber in Hospital Authority (HA) hospitals in Hong Kong has limited the number of HBOT sessions administered to patients with CO poisoning, particularly those with severe poisoning, because of the risks associated with patient management at a remote site deprived of medical support. Special arrangements would currently be required to send a patient to Ngong Shuen Chau for HBOT. To date, PYNEH has been the principal advocator of HBOT for CO poisoning patients in Hong Kong and has treated the largest number of severe cases.
 
This 10-year retrospective study aimed to describe the clinical profile of all CO poisoning patients admitted to PYNEH with the aim of improving vigilance of health care professionals for DNS associated with CO poisoning and identifying the prognostic factors for their development. The study also aimed to assess the impact of HBOT on the development of DNS in these patients.
 
Methods
Data collection
Patients with a diagnosis of CO poisoning documented in the Clinical Management System (CMS) of the HA and being managed at PYNEH between 12 February 2003 and 8 November 2013 were included. This entailed recourse to the Clinical Data Analysis and Reporting System (CDARS) of the HA. Relevant accident and emergency notes, radiological reports, laboratory results, and discharge summaries were retrieved. The following were recorded where available: age, sex, systolic and diastolic blood pressure, heart rate, temperature, electrocardiogram (ECG), Glasgow Coma Scale (GCS) score at presentation, endotracheal intubation, history of or presence of loss of consciousness (LOC), blood tests for carboxyhaemoglobin (COHb) level, creatine kinase (CK) level, troponin (Tn) level, HBOT, complications from HBOT, development of DNS, co-ingestion, suicidal methods and intention.
 
Case selection of hyperbaric oxygen therapy in our hospital
The use of HBOT for severe CO poisoning was advocated in the Intensive Care Unit of PYNEH after 2008. The need for HBOT in patients who presented with CO poisoning was judged on a case-by-case basis. The indications for and contra-indications to HBOT for patients with severe CO poisoning are summarised in Table 1. The treatment protocol of HBOT for CO poisoning at Ngong Shuen Chau is shown in the Figure. Most patients were given three sessions of HBOT over 3 consecutive days. Exceptions included refusal by patients or their relatives, or operational difficulties.
 

Table 1. Indications and contra-indications for HBOT in patients with severe CO poisoning, with reference to the Undersea and Hyperbaric Medical Society
 

Figure. Treatment protocol of HBOT for carbon monoxide poisoning in Ngong Shuen Chau (Royal Navy table 60)
 
Statistical analyses
Univariate analysis for the development of DNS was done by the Fisher’s exact test for dichotomous variables and the Mann-Whitney U test for continuous variables, with respect to the following factors: age, sex, source of CO, cause of CO poisoning, systolic and diastolic blood pressure, heart rate, temperature, GCS, GCS=3, LOC, COHb level, COHb level >25%, Tn level, Tn level >0.03 ng/mL, CK level, CK level >200 IU/L, ECG ischaemic changes, endotracheal intubation, co-ingestion, and HBOT. The distribution of Tn and CK levels showed positive skewness, thus the parameters were expressed in terms of means and standard deviations, as well as medians and interquartile ranges. All statistical analyses were performed using the Statistical Package for the Social Sciences (Windows version 22.0; SPSS Inc, Chicago [IL], US). The level of statistical significance was set at 0.05.
 
Results
A total of 95 cases were diagnosed with CO poisoning during the study period. One case was excluded because the patient presented with cardiac arrest and succumbed shortly after admission before any blood tests were performed. Another case of DNS that resulted in convulsion, dysphasia, and double incontinence was excluded as the acute CO poisoning event occurred in Manila. The remaining 93 cases were recruited for analysis. All the demographic data and blood test results are shown in Table 2. Among the 93 patients analysed, 24 received HBOT; DNS had not developed in this group of patients. Nonetheless DNS had developed in seven patients who did not undergo HBOT.
 

Table 2. Demographic data and investigation results of all cases and comparative univariate analysis between the DNS and non-DNS groups
 
Patients with delayed neurological sequelae
Among the seven cases of DNS where patients did not undergo HBOT, no formal follow-up had been arranged to detect DNS associated with CO poisoning. Nonetheless, DNS was diagnosed in these cases because the neurological symptoms became evident during the same episode of hospitalisation, or the neurological symptoms were detected by their caretakers after the initial hospitalisation. The clinical profiles of these DNS patients with radiological confirmation are summarised in Table 3.
 

Table 3. Descriptive summary of the seven patients with DNS
 
Hyperbaric oxygen therapy
There were 24 patients treated with HBOT. Their mean age was 36.3 (range, 19-61) years and the male-to-female ratio was 1:1. Of these 24 patients, the source of CO poisoning in 23 (96%) was charcoal burning and one (4%) patient had accidental CO poisoning due to leakage of a liquid petroleum gas combustion system while bathing. In 21 (87.5%) patients, LOC developed prior to admission. There were four (17%) patients with GCS score of 15/15 and 20 (83%) patients with GCS score of 3-14/15. The mean COHb level was 29.2% (range, 3.3%-48.7%); Tn level was elevated in 15 (78.9%) of 19 cases; CK level was elevated in 13 (65%) of 20 cases; ECG showed acute ischaemic changes in five (21%) cases. No DNS developed in patients treated with HBOT.
 
Complications of hyperbaric oxygen therapy
Complications secondary to HBOT developed in three patients: perforated tympanic membrane in one patient, left otitis media related to grommet insertion before HBOT in one, and barotrauma with left ear pain due to blockage of the myringotomy site in another who required repeated myringotomy. Nonetheless all patients completed the whole course of HBOT without long-term sequelae.
 
Patients with carbon monoxide poisoning and acute ischaemic electrocardiographic changes
The most common ischaemic change on ECG was ST segment depression. Acute ischaemic changes were evident in nine patients. Their mean age was 42 (range, 27-61) years, and the male-to-female ratio was 5:4. Eight (89%) cases committed suicide by charcoal burning and one (11%) patient had CO poisoning due to an accidental fire. In seven (78%) patients, LOC developed prior to admission. There was one (11%) patient with GCS score of 15/15, and eight (89%) patients with score of 3-14/15. The mean COHb level was 24.3% (range, 3.9%-48.7%); Tn level was elevated in seven (78%) patients and CK level was elevated in four (44%). The HBOT was offered to five (56%) patients with ischaemic ECG changes and DNS developed in one (11%) patient.
 
Detailed descriptive analysis of the GCS of all patients showed a bimodal distribution with one mode at GCS of 3 points and the other at GCS of 15 points. Thus, GCS of 3 points was used as an indicator of severe CO poisoning. One of the clinical indications for HBOT was COHb level of >25% and served as another indicator of severe CO poisoning. Thus, GCS of 3 and COHb level of >25% were tested as possible prognostic factors for DNS.
 
Due to variations in the clinical management, blood tests for Tn and CK were not carried out in all patients. Elevated Tn was defined as serum Tn level of >0.03 ng/mL on admission. Level of Tn was not checked throughout the clinical course in 44 patients but was elevated in 22 and normal in 27. Elevated CK was defined as serum CK level of >200 IU/L. This value was used for simplicity as the upper limit of normal is 180 IU/L in our laboratory. Level of CK was not checked throughout the clinical course in 32 patients but was raised in 30 and normal in 31.
 
Comparative statistical analysis showed that the DNS group had significantly lower GCS score, a greater proportion of patients with GCS of 3 points, and higher levels of Tn (Table 2). However, CK levels were significantly higher in the non-DNS than in the DNS group, although the proportions of elevated CK were not statistically significant. The higher CK level in the non-DNS group can be explained by one single case of severe CO poisoning with prolonged LOC, pressure sores, and compartment syndrome leading to a supremely high CK level of 73 560 IU/L on admission. The result is better illustrated by comparison of the median and interquartile range as shown in Table 2. The association between the possible benefit of HBOT and DNS was not statistically significant (P=0.184).
 
In order to identify possible prognostic factors for DNS development and to eliminate the possible effect of HBOT, a second comparative analysis was performed between the DNS group and non-DNS group after excluding those patients treated by HBOT (Table 4). This second analysis showed that when compared with the non-DNS group, the DNS group had a significantly greater proportion of patients with LOC and GCS score of 3, lower GCS score, higher levels of Tn and CK, higher proportion of patients with elevated Tn, and higher tendency to have been intubated.
 

Table 4. Comparative univariate analysis of DNS and non-DNS groups, with HBOT-treated patients excluded
 
Since the HBOT group did not develop DNS and the DNS group did not receive HBOT, another univariate analysis was performed to detect any significant difference between these two groups (Table 5). This showed that the DNS and HBOT groups were similar for all the above tested variables, except for the Tn level that was significantly higher in the DNS group. The proportion of patients with elevated Tn was similar for the two groups, however.
 

Table 5. Comparative univariate analysis of DNS and HBOT groups
 
Discussion
Pathophysiology of carbon monoxide poisoning
Carbon monoxide is a colourless, odourless, non-irritating but highly toxic gas produced during incomplete carbon combustion. A small amount of CO is produced after degradation of heme physiologically in human body.9 Poisoning of CO develops only after the dose exceeds the elimination capacity. The elimination half-life of COHb in humans is approximately 208 to 358 minutes in room air,10 74 minutes in normobaric oxygen therapy,11 and 20 minutes in 3 atmosphere absolute pressure of HBOT.12 Carbon monoxide binds to haemoglobin, myoglobin, and cytochrome oxidase with an affinity of 200 to 300 times, 30 to 60 times, and 9 times more than oxygen, respectively. The decrease in oxygen carrying and delivery capacity of blood results in tissue hypoxia.13 Cellular hypoxia causes the release of free radicals that bind with nitric oxide (NO) from heme to produce peroxynitrite (ONOO-), further inhibiting cytochrome oxidase and resulting in DNA damage and apoptosis.14 15 16
 
The clinical presentation of ‘cherry-like’ skin discolouration is secondary to the red colour of COHb and CO-induced vasodilation. Headache from CO poisoning is likely mediated by extracerebral and intracerebral vasodilation with displacement of NO from heme by CO.15 17 On the other hand, DNS is likely to be caused by the combination of COHb, mitochondrial oxidative stress, NO, ONOO-, oxygen free radicals, apoptosis, immune-mediated injury, inflammatory response, brain lipid peroxidation, and other unknown mechanisms.13 14 15 16 17 18 19 20 21 22
 
Delayed neurological sequelae
There is no universal agreed definition of DNS following CO poisoning. It is typically preceded by a lucid period of 2 to 40 days after the initial poisoning.20 Clinical manifestations range from impairment of concentration, attention, learning, memory, language and motor function, as well as psychiatric functions such as depression, dementia, psychosis and mutism, to neurological dysfunction such as paralysis, convulsion, urine or faecal incontinence, gait disturbance, and Parkinson-like syndrome.
 
According to the uniqueness of the health care system in Hong Kong, there is more than a 90% chance that patients with severe DNS will rely on the public sector for further management. In addition, all cases were analysed for detection of DNS until December 2014 in this study. All cases were followed up by CMS record for more than 1 year, thus most patients in this cohort who developed severe DNS should have been captured. Contrary to the current belief that onset of DNS development ranges typically from a few days to a few weeks,23 this study showed that DNS might present as late as 6 months to 1 year after the index CO poisoning. Regular follow-up is required to detect the onset of DNS. Further studies are necessary to determine the optimum follow-up duration for DNS.
 
All seven DNS cases illustrated that DNS secondary to CO poisoning can be very debilitating to both patients and their caretakers. Of 93 patients, only 55 (59.1%) were followed up in our psychiatric unit. None of the 93 patients with CO poisoning were followed up in our medical unit. No mild-to-moderate case of DNS was reported in this study, probably due to the absence of a standardised treatment protocol and formal neuropsychiatric tests for detection of DNS secondary to CO poisoning. It is therefore likely that cases of mild-to-moderate DNS are underdiagnosed and under-reported in Hong Kong. In order to diagnose DNS secondary to CO poisoning, a standardised treatment protocol with adequate follow-up and neuropsychiatric tests is recommended.
 
We identified the following prognostic factors associated with DNS development in patients with severe CO poisoning: LOC, lower GCS score, GCS score of 3, intubation requirement, elevated Tn level, and higher levels of Tn and CK. Other investigational prognostic markers reported worldwide include S100B protein,24 low Mini-Mental State Examination score,25 positive computed tomography of brain,25 26 and plasma copeptin.27
 
The results of this study reveal that severe DNS did not develop in any patient with severe CO poisoning who was treated with HBOT at PYNEH between 2008 and 2013. Although the results did not reach statistical significance due to limited sample size, this 100% protective effect indicates a potential clinical benefit of HBOT to prevent severe DNS in patients with severe CO poisoning. In order to look for potential selection bias between the DNS group and HBOT group, comparative univariate analysis between the DNS and HBOT groups was performed (Table 5). The DNS groups and HBOT groups were similar in terms of the initial presentation. Although the magnitude of Tn level in the DNS group (2.56 ± 1.3 ng/mL) was statistically greater than that of HBOT group (1.10 ± 2.6 ng/mL) with a P value of 0.015, it was not clinically significant in terms of patient management. The sole different factor was the treatment of HBOT. It is strongly suggested that HBOT prevents DNS development in severe CO poisoning.
 
The role of HBOT in the management of patients with CO poisoning remains controversial with conflicting results from large randomised controlled trials. All trials have been criticised for bias, thus there has been a pledge for a better-designed trial with multicentre participation. Nonetheless ethical, financial, and practical issues associated with most clinical toxicology studies make such a trial unlikely in the near future. The results of this study did show clinical significance despite a statistically insignificant result. Current literature supports the potential of HBOT to prevent or treat DNS resulting from CO poisoning.2 4 5 6 7 22 On balance, HBOT should be considered for all patients at risk of development of neurological sequelae.22
 
In Hong Kong, HBOT has been underutilised in public hospitals because of the unavailability of hospital-based hyperbaric chambers. Most patients in Hong Kong with severe CO poisoning do not receive HBOT because of the risks of transporting a critically ill patient to Ngong Shuen Chau, the inadequacy of intensive care support in the hyperbaric chamber of Ngong Shuen Chau, occupational hazards, beliefs of individual health care providers, and availability of expertise. A hospital-based hyperbaric oxygen chamber is essential to decrease the burden of HBOT and provide timely treatment in a safe environment for patients with severe CO poisoning.
 
Records retrieved from CDARS for the period 2003 to 2013 revealed 1451 patients with CO poisoning who presented to HA hospitals. This indicates that approximately two patients with CO poisoning presented to hospitals every 5 days over the last 10 years. According to the indications for HBOT adopted in this study, the percentage of patients in whom HBOT was indicated was 67.7% (63/93). Assuming three sessions of HBOT would have been required for each patient and the percentage of patients requiring HBOT over the last 10 years was 67.7%, it can be estimated that 295 sessions of HBOT would have been required by patients treated in HA hospitals (1451 patients x 67.7% x 3 sessions / 10 years = 295). If a hyperbaric oxygen chamber is available in a public hospital, more patients with CO poisoning can be treated in a safe and controlled environment. Suppose the incidence of DNS in Hong Kong is similar to that worldwide (10%-30%), then 145 to 435 instances of DNS may have been potentially prevented in these 10 years. In addition, the length of stay in hospital may have been significantly decreased.
 
Limitations
First, selection bias existed in this study although diagnosis coding entry has been compulsory in the accident and emergency department of PYNEH since 2008. It is possible that some patients with CO poisoning were admitted with another principal diagnosis and discharged without coding of CO poisoning. If this is the case, then not all patients with CO poisoning during the study period were retrieved in this study. This was a single-centre study and results might not be applicable to all patients with CO poisoning in Hong Kong. Second, there was information bias due to its retrospective nature. Not all patients were investigated with Tn, CK, and ECG leading to potential bias. The time of investigations and oxygen treatment given to patients were not standardised giving rise to difficulty in interpretation of a relatively low COHb level at presentation. In addition, no neuropsychiatric tests were performed to detect any DNS after CO poisoning, resulting in underdiagnosis of DNS. The strength in information bias is the outcome measurement of DNS and laboratory results that provide an objective measure, unlike a questionnaire. Third, confounding bias was inevitable as 45.2% of patients had co-ingestion of medications or alcohol. This might have influenced the initial clinical presentation as well as the results. Subgroup analysis of different medications was not shown because of the diversities and complexity without significant results. Lastly, despite the length of the study period, the sample size was inadequate to provide statistically significant results.
 
Conclusion
Although not statistically significant, this study showed 100% protective effect of HBOT against development of severe DNS in patients with severe CO poisoning. Further study with better study design is warranted. This study revealed that LOC, low GCS score, intubation requirement, elevated Tn and higher CK levels were possible prognostic factors for development of DNS. As there was no standardised treatment protocol and no formal follow-up arranged for detection of DNS in patients with severe CO poisoning, mild-to-moderate DNS was probably underdiagnosed and under-reported in Hong Kong. A well-defined treatment protocol, appropriate follow-up duration, and neuropsychiatric tests together with a hospital-based hyperbaric chamber are recommended for management of patients with severe CO poisoning.
 
Declaration
No conflicts of interest were declared by the authors.
 
References
1. Chan KP, Yip PS, Au J, Lee DT. Charcoal-burning suicide in post-transition Hong Kong. Br J Psychiatry 2005;186:67-73. Crossref
2. Raphael JC, Elkharrat D, Jars-Guincestre MC, et al. Trial of normobaric and hyperbaric oxygen for acute carbon monoxide intoxication. Lancet 1989;2:414-9. Crossref
3. Hu H, Pan X, Wan Y, Zhang Q, Liang W. Factors affecting the prognosis of patients with delayed encephalopathy after acute carbon monoxide poisoning. Am J Emerg Med 2011;29:261-4. Crossref
4. Scheinkestel CD, Bailey M, Myles PS, et al. Hyperbaric or normobaric oxygen for acute carbon monoxide poisoning: a randomised controlled clinical trial. Med J Aust 1999;170:203-10.
5. Thom SR, Taber RL, Mendiguren II, Clark JM, Hardy KR, Fisher AB. Delayed neuropsychologic sequelae after carbon monoxide poisoning: prevention by treatment with hyperbaric oxygen. Ann Emerg Med 1995;25:474-80. Crossref
6. Weaver LK, Hopkins RO, Chan KJ, et al. Hyperbaric oxygen for acute carbon monoxide poisoning. N Engl J Med 2002;347:1057-67. Crossref
7. Buckley NA, Juurlink DN, Isbister G, Bennet MH, Lavonas EJ. Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Syst Rev 2011;(4):CD002041. Crossref
8. Lam KK, Fung HT, Kam CW. The severity and prognostic markers of 148 cases of carbon monoxide poisoning by burning charcoal. Hong Kong J Emerg Med 2006;13:6-16.
9. Owens EO. Endogenous carbon monoxide production in disease. Clin Biochem 2010;43:1183-8. Crossref
10. Bruce EN, Bruce MC. A multicompartment model of carboxyhemoglobin and carboxymyoglobin responses to inhalation of carbon monoxide. J Appl Physiol (1985) 2003;95:1235-47. Crossref
11. Weaver LK, Howe S, Hopkins R, Chan KJ. Carboxyhemoglobin half-life in carbon monoxide-poisoned patients treated with 100% oxygen at atmospheric pressure. Chest 2000;117:801-8. Crossref
12. Peterson JE, Stewart RD. Absorption and elimination of carbon monoxide by inactive young men. Arch Environ Health 1970;21:165-71. Crossref
13. Coburn RF, Mayers LB. Myoglobin oxygen tension determines from measurements of carboxyhemoglobin in skeletal muscle. Am J Physiol 1971;220:66-74.
14. Zhang J, Piantadosi CA. Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. J Clin Invest 1992;90:1193-9. Crossref
15. Thom SR, Ohnishi TS, Ischiropoulos H. Nitric oxide release by platelets inhibits neutrophil B2 integrin function following acute carbon monoxide poisoning. Toxicol Appl Pharmacol 1994;128:105-10. Crossref
16. Hardy KR, Thom SR. Pathophysiology and treatment of carbon monoxide poisoning. J Toxicol Clin Toxicol 1994;32:613-29. Crossref
17. Thom SR, Fisher D, Xu YA, Garner S, Ischiropoulos H. Role of nitric oxide-derived oxidants in vascular injury from carbon monoxide in the rat. Am J Physiol 1999;276:H984-92.
18. Thom SR. Carbon monoxide-mediated brain lipid peroxidation in the rat. J Appl Physiol (1985) 1990;68:997-1003.
19. Thom SR. Dehydrogenase conversion to oxidase and lipid peroxidation in brain after carbon monoxide poisoning. J Appl Physiol (1985) 1992;73:1584-9.
20. Thom SR. Antagonism of carbon monoxide–mediated brain lipid peroxidation by hyperbaric oxygen. Toxicol Appl Pharmacol 1990;105:340-4. Crossref
21. Thom SR, Bhopale VM, Fisher D, Zhang J, Gimotty P. Delayed neuropathology after carbon monoxide poisoning is immune-mediated. Proc Natl Acad Sci USA 2004;101:13660-5. Crossref
22. Weaver LK. Clinical practice: carbon monoxide poisoning. N Engl J Med 2009;369:1217-25. Crossref
23. Choi IS. Delayed neurological sequelae in carbon monoxide intoxication. Arch Neurol 1983;40:433-5. Crossref
24. Park E, Ahn J, Min YG, et al. The usefulness of the serum s100b protein for predicting delayed neurological sequelae in acute carbon monoxide poisoning. Clin Toxicol (Phila) 2012;50:183-8. Crossref
25. Ku HL, Yang KC, Lee YC, Lee MB, Chou YH. Predictors of carbon monoxide poisoning–induced delayed neuropsychological sequelae. Gen Hosp Psychiatry 2010;32:310-4. Crossref
26. Kudo K, Otsuka K, Yagi J, et al. Predictors for delayed encephalopathy following acute carbon monoxide poisoning. BMC Emerg Med 2014;14:3. Crossref
27. Pang L, Wang HL, Wang ZH, et al. Plasma copeptin as a predictor of intoxication severity and delayed neurological sequelae in acute carbon monoxide poisoning. Peptides 2014;59:89-93. Crossref

Partial nephrectomy for T1 renal cancer can achieve an equivalent oncological outcome to radical nephrectomy with better renal preservation: the way to go

Hong Kong Med J 2016 Feb;22(1):39–45 | Epub 23 Oct 2015
DOI: 10.12809/hkmj144482
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Partial nephrectomy for T1 renal cancer can achieve an equivalent oncological outcome to radical nephrectomy with better renal preservation: the way to go
Terence CT Lai, MB, BS; WK Ma, MB, ChB, FRCSEd (Urol); MK Yiu, MB, BS, FRCSEd
Division of Urology, Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
 
Corresponding author: Dr WK Ma (kitkitma@yahoo.com)
 
 Full paper in PDF
Abstract
Introduction: Patients who undergo partial nephrectomy have been shown to be at decreased risk of renal impairment compared with radical nephrectomy. We examined the oncological outcome of patients in our centre who underwent partial or radical nephrectomy for T1 renal cancer (7 cm or smaller), and compared the likelihood of developing chronic kidney disease.
 
Methods: This historical cohort study with internal comparison was conducted in a tertiary hospital in Hong Kong. A cohort of 86 patients with solitary T1 renal cancer and a normal contralateral kidney who underwent radical (38 patients) or partial (48 patients) nephrectomy between January 2005 and December 2010 was included. The overall and cancer-free survival, change in glomerular filtration rate, and new onset of chronic kidney disease were compared between the radical and partial nephrectomy groups.
 
Results: A total of 32 (84%) radical nephrectomy patients and 43 (90%) partial nephrectomy patients were alive by 31 December 2012. The mean follow-up was 43.5 (standard deviation, 22.4) months. There was no significant difference in overall survival (P=0.29) or cancer-free survival (P=0.29) between the two groups. Both groups enjoyed good oncological outcome with no recurrence in the partial nephrectomy group. Overall, 18 (21%) patients had pre-existing chronic kidney disease. The partial nephrectomy group had a significantly smaller median reduction in glomerular filtration rate (12.6% vs 35.4%; P<0.001), and radical nephrectomy carried a significantly higher risk of developing chronic kidney disease (hazard ratio=5.44; 95% confidence interval, 1.26-23.55; P=0.02).
 
Conclusions: Compared with radical nephrectomy, partial nephrectomy can prevent chronic kidney disease and still achieve an excellent oncological outcome for T1 renal tumours, in particular T1a tumours and tumours with a low R.E.N.A.L. score.
 
New knowledge added by this study
  • Partial nephrectomy for T1 renal tumour is associated with excellent overall and cancer-free survival, and better renal preservation than radical nephrectomy.
Implications for clinical practice or policy
  • As a significant proportion of T1 renal cancers are still managed by radical nephrectomy in our locality, we recommend partial nephrectomy for T1a and selected T1b renal cancers, provided that relevant expertise is available.
 
 
Introduction
With the widespread use of advanced imaging such as computed tomography (CT), many renal tumours are now incidentally discovered before the patient becomes symptomatic. These tumours are often of small size. This has led to the emerging practice of partial nephrectomy (PN) rather than radical nephrectomy (RN) that has been the gold-standard treatment for localised renal tumours for over 40 years.1 Studies have shown that cancer control can be achieved by PN in patients with T1a tumours,2 3 4 5 and some studies also supported the extended use of PN for T1b tumours.6 7 8 9 In addition, patients who undergo PN have been shown to be at decreased risk of renal impairment.10
 
Nonetheless, many surgeons in Hong Kong continue to perform RN for all renal tumours, regardless of their size. The major concerns are the technical difficulty of PN and the associated major postoperative complications.
 
The aim of this study was to compare the oncological outcome, survival, and changes in renal function in patients who underwent RN or PN for T1 renal cancer in our centre. Patients were predominantly of Chinese ethnicity.
 
Methods
We retrospectively reviewed the data of patients who underwent RN or PN at our centre between January 2005 and December 2010. Patients with a solitary tumour of 7 cm or less in diameter and a normal contralateral kidney were included. The decision to perform PN was based on tumour characteristics (size, proximity to collecting system and major vessels) and the surgeon’s preference. Exclusion criteria were: end-stage renal failure (glomerular filtration rate [GFR] <15 mL/min/1.73 m2), history of renal transplantation, known hereditary renal cancer, known poor or non-functioning contralateral kidney, history of nephrectomy, and preoperative evidence of tumour metastases.
 
Preoperative parameters including age, gender, serum creatinine, and estimated GFR were studied. We used the modified Charlson-Romano index to compare patient co-morbidity.11 We also compared postoperative outcome for the RN and PN groups, including length of hospital stay, complications, and 90-day mortality. Severity of complications was graded using the Clavien-Dindo classification system.12
 
Our study outcome included 5-year overall survival, cancer-free survival, change in renal function in terms of estimated GFR (eGFR), and new onset of chronic kidney disease (CKD)—GFR was calculated with the four-variable Modification of Diet in Renal Disease formula: eGFR = 32 788 x serum creatinine (µmol/L)-1.154 x age-0.203 x [1.212 if black] x [0.742 if female]13; CKD was defined as GFR of <60 mL/min/1.73 m2. Patients were followed up according to international guidelines, with slight variation in timing of imaging due to examination waiting time issues. In general, follow-up was scheduled every 3 months within the first year of operation with measurement of serum creatinine and GFR, and CT scan was performed approximately 12 months following surgery. Patients were subsequently followed up every 6 months, with renal function checked at each visit, and imaging studies (ultrasonography or CT) performed annually for the first 5 years and thereafter once every 2 years.
 
For preoperative characteristics and postoperative outcome, P value was determined by the Chi squared test and Mann-Whitney U test for categorical and continuous variables, respectively. Kaplan-Meier model was used for 5-year overall and cancer-free survival, and the postulated 5-year probability of freedom from CKD. Risk of new onset of CKD was calculated with Cox proportional hazards regression, adjusted for age, Charlson Comorbidity Index (CCI), preoperative GFR, gender, and tumour size; with time to CKD development as dependent variable; death, loss to follow-up, or last follow-up date before 31 December 2012 were censored in the analysis. Overall survival was analysed by Cox proportional hazards regression adjusted with Fuhrman grade of tumour, in addition to the above factors. We did not include diabetes mellitus as it was included in the CCI. We considered a 2-sided P value of <0.05 as statistically significant. All statistical analyses were performed with the Statistical Package for the Social Sciences (Windows version 20.0; SPSS Inc, Chicago [IL], US).
 
Results
A total of 86 patients were reviewed, with a mean (± standard deviation) follow-up time of 43.5 ± 22.4 months. Four (5%) patients were lost to follow-up with their status unknown by the end of our study. Overall, RN was performed in 38 patients and PN in 48. Age, gender, and preoperative serum creatinine level and GFR were similar between the two groups. The mean age of RN and PN groups was 61 years and 63 years, respectively (P=0.48), with a respective mean preoperative GFR of 80.8 mL/min/1.73 m2 and 75.0 mL/min/1.73 m2 (P=0.38). Six (16%) patients in the RN group and 11 (23%) in the PN group had a preoperative GFR of <60 mL/min/1.73 m2; one patient in the PN group had a preoperative GFR of <30 mL/min/1.73m2. Most patients in the RN and PN groups had a CCI of <2 (84% vs 85%; P=0.87). The respective mean follow-up time was 42.1 ± 24.0 and 44.5 ± 21.3 months (P=0.62) [Table 1].
 

Table 1. Patient demographics and tumour characteristics
 
Tumours were more complex in the RN group in terms of the R.E.N.A.L. score14 derived from preoperative CT (8.4 vs 6.7, P<0.001). The mean tumour size, based on final pathological examination, was also larger in the RN group (4.8 cm vs 2.5 cm, P<0.001). In the RN group, 24 (63%) patients had a T1b tumour compared with three (6%) in the PN group (P<0.001). Comparison of the first half of our study period (2005-2008) with the second half (2009-2010) revealed that tumour characteristics were similar in the PN group, in terms of both size (2.4 cm vs 2.5 cm; P=0.93) and R.E.N.A.L. score (6.2 vs 7.0; P=0.32). Most tumours in both groups were of the clear cell type. The RN group had more Fuhrman grade 3 tumours but the difference was not significant (Table 1). All resections enjoyed clear resection margins on final pathological examination.
 
All RNs were performed via a laparoscopic approach. An open procedure was performed for 29 (60%) of the PNs, eight (17%) were performed via a laparoscopic approach, and 11 (23%) with robotic assistance. Of the latter, conversion to an open procedure was required in two cases. Operating time was significantly longer in the PN group (250 mins vs 345 mins; P<0.001). None of the PNs were converted to RN.
 
All PNs were performed with vascular control achieved by hilar clamping. Overall, 28 (58%) PNs were performed with cold ischaemia using ice slush, with a mean cold ischaemia time of 70 minutes; among these, 23 (82%) were an open procedure and two were conversion of robotic-assisted laparoscopic PN to open procedure. Of the PNs, 20 (42%) were performed with warm ischaemia, and the mean warm ischaemia time was 32 minutes; all laparoscopic PNs were performed with warm ischaemia. The complexity of tumour in terms of R.E.N.A.L. score was significantly lower in the warm ischaemia group (5.7 vs 7.5; P=0.01).
 
Patients in the PN group had a longer postoperative hospital stay (6 vs 13 days; P<0.001); one of whom died within 90 days of surgery of cholecystitis and septic complications unrelated to the renal cancer.
 
Postoperative complication rates were similar between the two groups (P=0.19), although the PN group had more Clavien grade III or above complications (0% vs 10%; Table 2). Four patients had persistent urine leakage that was successfully treated with retrograde injection of surgical adhesive glue; one patient developed pseudoaneurysm of the segmental branch of the renal artery, which was treated by angiographic embolisation. No long-term morbidity or mortality occurred. Complication rate was not associated with patient age, CCI, R.E.N.A.L. score of tumour, or operative parameters (operative approach, operating time, and ischaemia time).
 

Table 2. Postoperative outcomes
 
An overall excellent oncological outcome was achieved by both groups. Extensive metastases were evident 3 months after operation in one patient in the RN group but these were not apparent before operation. By 31 December 2012, 32 (84%) RN and 43 (90%) PN patients were alive. The overall 5-year survival for the RN and PN groups was 84.2% and 89.6% (P=0.29) respectively, and the cancer-free survival was 97% and 100% (P=0.29) respectively. Both RN and PN did not affect overall survival (hazard ratio=0.84; 95% confidence interval [CI], 0.17-4.02; P=0.82), after adjustment for age, CCI, preoperative GFR, gender, tumour size, and Fuhrman grade (Table 3).
 

Table 3. Factors associated with overall survival
 
Patients who underwent RN had a greater median reduction in GFR than PN patients (35.4% vs 12.6%; P<0.001), and the degree of reduction was most distinctive in the first year after operation (Fig 1). In the PN group, one patient with a preoperative GFR of 30 mL/min/1.73 m2 developed stage 5 CKD 4 years after surgery and required renal replacement therapy. Preoperative GFR was >60 mL/min/1.73 m2 in 32 patients in the RN group and in 36 patients in the PN group. At their last follow-up, CKD was developed in 18 (56%) patients who underwent RN but new-onset CKD was evident in only five (14%) of the PN group (P<0.001). The majority of the CKD cases were stage 3 (94% in RN group and 80% in PN group); none was in stage 5. Cox proportional hazards regression model showed that RN was the most significant factor contributing to the development of CKD (RN vs PN, hazard ratio=5.44; 95% CI, 1.26-23.55; P=0.02; Table 4). The postulated probability of freedom from new-onset CKD in 5 years, by Kaplan-Meier model, was 33% and 81% in the RN and PN groups, respectively (P<0.001; Fig 2).
 

Figure 1. Change of glomerular filtration rate (GFR) after surgery of patients undergoing partial nephrectomy (PN) and radical nephrectomy (RN)
RN patients had a higher median reduction in GFR than PN patients (35.4% vs 12.6%; P<0.001), and the difference was most distinctive in the first year after operation, and sustained throughout the years
 

Table 4. Factors associated with new-onset chronic kidney disease after operation
 

Figure 2. The postulated probability of freedom from new-onset chronic kidney disease (CKD) in 5 years was 33% and 81% in radical nephrectomy (RN) and partial nephrectomy (PN) groups, respectively (P<0.001)
 
Discussion
Many surgeons have underestimated the impact of renal impairment after RN for renal cancer, on the basis that organ donors who undergo nephrectomy are not at increased risk of renal failure or death.15 16 17 Nonetheless, donors represent a different population as they are often young and fit. Patients with renal cancer are often older and have co-morbidities such as hypertension and diabetes mellitus. In our study, 21% of our patients had a GFR of <60 mL/min/1.73 m2 prior to surgery and 15% had a CCI of ≥2. Therefore it is logical that this cohort of patients may benefit from a surgical technique that preserves more of their renal function.
 
Our study showed that PN resulted in less renal deterioration in terms of GFR, with RN having a hazard ratio of 5.44 for development of CKD, after taking into consideration the patient co-morbidities, gender, age, and tumour size. The postulated probability of freedom from new onset of CKD in 5 years in our series was 33% following RN and 81% following PN. This echoes the finding of Huang et al10 who reported the 3-year probability of freedom from new onset of CKD as 35% after RN and 80% after PN; RN remained an independent risk factor for development of new-onset CKD with a hazard ratio of 3.82.
 
A community-based study showed that CKD was an independent risk factor for the development of cardiovascular events, hospitalisation, and death.18 In a population-based cohort of 7769 patients, RN was associated with a 1.23-fold increase in overall mortality compared with PN (P=0.001), and a higher rate of non–cancer-related mortality.19 Huang et al10 also demonstrated that RN was associated with a 1.46-fold increased risk of overall mortality, although the risk of a cardiovascular event was not increased in the RN group. Evidence that PN decreases overall mortality remains contradictory. A randomised controlled trial showed that RN had comparable overall survival with PN after a median follow-up of 9.3 years.20 In our study we did not show a significant difference in overall survival between PN and RN groups.
 
Another concern of PN is its cancer control, since the prevention of local recurrence is of paramount importance. The extent of resection is affected by tumour size, proximity to the collecting system, and location and degree of exophytic growth. It is generally accepted that PN can achieve excellent oncological outcome for tumours smaller than 4 cm, with a long-term 5-year and 10-year cancer-free survival rates of 92% to 100%.2 21 22 23 Studies have demonstrated the feasibility of PN for tumours larger than 4 cm without compromising the oncological outcome, although there was a higher risk of peri-operative bleeding and other complications.23 24 In our cohort, we achieved a 100% clear surgical resection margin with PN, and no local recurrence was found after 5 years.
 
Increased peri-operative morbidity is traditionally a concern in PN. There were more Clavien grade III complications and a longer hospital stay for patients who underwent PN in our cohort. The most common complication in an open PN series was urine leakage, with a mean incidence of 6.5% (range, 2.1%-17%).25 26 In a multicentre review of 51 laparoscopic PNs, postoperative urine leakage was observed in three (6%) patients.27 The results of a previous series by Gill et al,28 supported by our results, suggested that both tumour location and diameter were not related to the occurrence of urine leakage. In contrast to the logical thinking that calyceal entry was not observed during renorrhaphy, it has been suggested that central coagulation necrosis with electrocautery is responsible for fistula formation.27 The use of a ureteral catheter and retrograde dye injection after haemostasis has been advocated to help identify any calyceal opening, but this was not supported in a retrospective series by Bove et al29 that involved 54 patients with and 49 patients without ureteral catheter placement. We believe that the adoption of cold cutting and elevation of the tumour from the tumour bed by the suction cannula, which also simultaneously aspirates the blood, can avoid coagulation necrosis and a clear operative field can be maintained so that any breaching of calyceal integrity can be identified. The use of a ureteral catheter can be an adjunct measure in equivocal cases when the tumour is abutting the calyceal lining on preoperative imaging.
 
Our study have some limitations. Since it was a retrospective study, patients were not randomised and there was a selection of smaller and less complex tumours in the PN group. There were also other confounding factors such as patient’s smoking status that were not included, hence the two groups were not totally comparable, although other patient demographics were similar. As a proportion of preoperative imaging could not be retrieved, the R.E.N.A.L. score could not be calculated for every patient included, and this contributed another confounding factor. Only three patients had T1b renal cancer in the PN group, thus the oncological outcome may be more certain in T1a renal cancer. Our stratified analysis in T1a renal cancer had a similar result with PN having an equivalent oncological outcome and superior renal function preservation, although the result is not shown here. In addition, the risk of tumour recurrence, negative effect of CKD and their effect on survival might not be truly reflected in our relatively short follow-up time. Nonetheless with experience, renal tumours of 4 cm or more in diameter may be amenable to safe PN with equivalent oncological outcome and a lower chance of progression to CKD. This may translate into improved overall survival.30
 
Conclusions
Partial nephrectomy can preserve more renal function and reduce the risk of development of CKD compared with RN. Excellent cancer control and a low local recurrence rate can still be achieved with PN for T1 tumours, in particular T1a tumours and tumours with a low R.E.N.A.L. score. Although RN continues to constitute a significant proportion of surgical procedures for T1 renal cancer in our locality, we recommend that, if technically feasible, PN should be performed for all T1a and selected T1b renal cancers.
 
References
1. Robson CJ, Churchill BM, Anderson W. The results of radical nephrectomy for renal cell carcinoma. J Urol 1969;101:297-301.
2. Fergany AF, Hafez KS, Novick AC. Long-term results of nephron sparing surgery for localized renal cell carcinoma: 10-year followup. J Urol 2000;163:442-5. Crossref
3. Lee CT, Katz J, Shi W, Thaler HT, Reuter VE, Russo P. Surgical management of renal tumors 4 cm or less in a contemporary cohort. J Urol 2000;163:730-6. Crossref
4. Touijer K, Jacqmin D, Kavoussi LR, et al. The expanding role of partial nephrectomy: a critical analysis of indications, results, and complications. Eur Urol 2010;57:214-22. Crossref
5. Van Poppel H, Da Pozzo L, Albrecht W, et al. A prospective randomized EORTC intergroup phase 3 study comparing the complications of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol 2007;51:1606-15. Crossref
6. Patard JJ, Shvarts O, Lam JS, et al. Safety and efficacy of partial nephrectomy for all T1 tumors based on an international multicenter experience. J Urol 2004;171:2181-5. Crossref
7. Leibovich BC, Blute M, Cheville JC, Lohse CM, Weaver AL, Zincke H. Nephron sparing surgery for appropriately selected renal cell carcinoma between 4 and 7 cm results in outcome similar to radical nephrectomy. J Urol 2004;171:1066-70. Crossref
8. Dash A, Vickers AJ, Schachter LR, Bach AM, Snyder ME, Russo P. Comparison of outcomes in elective partial vs radical nephrectomy for clear cell renal cell carcinoma of 4-7 cm. BJU Int 2006;97:939-45. Crossref
9. Antonelli A, Cozzoli A, Nicolai M, et al. Nephron-sparing surgery versus radical nephrectomy in the treatment of intracapsular renal cell carcinoma up to 7 cm. Eur Urol 2008;53:803-9. Crossref
10. Huang WC, Levey AS, Serio AM, et al. Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol 2006;7:735-40. Crossref
11. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373-83. Crossref
12. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004;240:205-13. Crossref
13. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999;130:461-70. Crossref
14. Kutikov A, Uzzo RG. The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol 2009;182:844-53. Crossref
15. Najarian JS, Chavers BM, McHugh LE, Matas AJ. 20 Years or more of follow-up of living kidney donors. Lancet 1992;340:807-10. Crossref
16. Fehrman-Ekholm I, Dunér F, Brink B, Tydén G, Elinder CG. No evidence of accelerated loss of kidney function in living kidney donors: results from a cross-sectional follow-up. Transplantation 2001;72:444-9. Crossref
17. Fehrman-Ekholm I, Elinder CG, Stenbeck M, Tydén G, Groth CG. Kidney donors live longer. Transplantation 1997;64:976-8. Crossref
18. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004;351:1296-305. Crossref
19. Zini L, Perrotte P, Capitanio U, et al. Radical versus partial nephrectomy: effect on overall and noncancer mortality. Cancer 2009;115:1465-71. Crossref
20. Van Poppel H, Da Pozzo L, Albrecht W, et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur Urol 2011;59:543-52. Crossref
21. Uzzo RG, Novick AC. Nephron sparing surgery for renal tumors: indications, techniques and outcomes. J Urol 2001;166:6-18. Crossref
22. Herr HW. Partial nephrectomy for unilateral renal carcinoma and a normal contralateral kidney: 10-year followup. J Urol 1999;161:33-4; discussion 34-5. Crossref
23. Becker F, Siemer S, Humke U, Hack M, Ziegler M, Stöckle M. Elective nephron sparing surgery should become standard treatment for small unilateral renal cell carcinoma: long-term survival data of 216 patients. Eur Urol 2006;49:308-13. Crossref
24. Patard JJ, Pantuck AJ, Crepel M, et al. Morbidity and clinical outcome of nephron-sparing surgery in relation to tumour size and indication. Eur Urol 2007;52:148-54. Crossref
25. Campbell SC, Novick AC, Streem SB, Klein E, Licht M. Complications of nephron sparing surgery for renal tumors. J Urol 1994;151:1177-80.
26. Kim FJ, Rha KH, Hernandez F, Jarrett TW, Pinto PA, Kavoussi LR. Laparoscopic radical versus partial nephrectomy: assessment of complications. J Urol 2003;170:408-11. Crossref
27. Jeschke K, Peschel R, Wakonig J, Schellander L, Bartsch G, Henning K. Laparoscopic nephron-sparing surgery for renal tumors. Urology 2001;58:688-92. Crossref
28. Gill IS, Desai MM, Kaouk JH, et al. Laparoscopic partial nephrectomy for renal tumor: duplicating open surgical techniques. J Urol 2002;167:469-76. Crossref
29. Bove P, Bhayani SB, Rha KH, Allaf ME, Jarrett TW, Kavoussi LR. Necessity of ureteral catheter during laparoscopic partial nephrectomy. J Urol 2004;172:458-60. Crossref
30. Weight CJ, Larson BT, Gao T, et al. Elective partial nephrectomy in patients with clinical T1b renal tumors is associated with improved overall survival. Urology 2010;76:631-7. Crossref

Association between pregnancy-associated plasma protein-A levels in the first trimester and gestational diabetes mellitus in Chinese women

Hong Kong Med J 2016 Feb;22(1):30–8 | Epub 23 Oct 2015
DOI: 10.12809/hkmj144470
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Association between pregnancy-associated plasma protein-A levels in the first trimester and gestational diabetes mellitus in Chinese women
Queenie KY Cheuk, MB, ChB, FHKAM (Obstetrics and Gynaecology); TK Lo, MB, BS, FHKAM (Obstetrics and Gynaecology); SF Wong, FRCOG, FHKAM (Obstetrics and Gynaecology); CP Lee, FRCOG, FHKAM (Obstetrics and Gynaecology)
Department of Obstetrics and Gynaecology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
 
Corresponding author: Dr Queenie KY Cheuk (dingcky@yahoo.com.hk)
 
 Full paper in PDF
Abstract
Introduction: Several studies have shown that women with pre-existing diabetes mellitus have significantly lower pregnancy–associated plasma protein-A levels than those without. This study aimed to evaluate whether first-trimester pregnancy–associated plasma protein-A multiple of median is associated with gestational diabetes mellitus in Chinese pregnant women.
 
Methods: This prospectively collected case series was conducted in a regional hospital in Hong Kong. All consecutive Chinese women with a singleton pregnancy who attended the hospital for their first antenatal visit (before 14 weeks’ gestation) from April to July 2014 were included. Pregnancy-associated plasma protein-A multiple of median was compared between the gestational diabetic (especially for early-onset gestational diabetes) and non-diabetic groups. The correlation between pregnancy-associated plasma protein-A level and glycosylated haemoglobin level in women with gestational diabetes was also examined.
 
Results: Of the 520 women recruited, gestational diabetes was diagnosed in 169 (32.5%). Among them, 43 (25.4%) had an early diagnosis, and 167 (98.8%) with the disease were managed by diet alone. The gestational diabetic group did not differ significantly to the non-diabetic group in pregnancy-associated plasma protein-A (0.97 vs 0.99, P=0.40) or free β-human chorionic gonadotrophin multiple of median (1.05 vs 1.02, P=0.29). Compared with the non-gestational diabetic group, women with early diagnosis of gestational diabetes had a non-significant reduction in pregnancy-associated plasma protein-A multiple of median (median, interquartile range: 0.86, 0.57-1.23 vs 0.99, 0.67-1.44; P=0.11). Pregnancy-associated plasma protein-A and glycosylated haemoglobin levels were not correlated in women with gestational diabetes (r=0.027; P=0.74).
 
Conclusions: Chinese women with non–insulin-dependent gestational diabetes did not exhibit significant changes to pregnancy-associated plasma protein-A multiple of median nor a correlation between pregnancy-associated plasma protein-A with glycosylated haemoglobin levels. Pregnancy-associated plasma protein-A multiple of median was not predictive of non–insulin-dependent gestational diabetes or early onset of gestational diabetes. There was a high prevalence of gestational diabetes in the Chinese population.
 
New knowledge added by this study
  • This is the first study to assess the association of first-trimester pregnancy–associated plasma protein-A multiple of median (PAPP-A MoM) with gestational diabetes mellitus (GDM) in a Chinese population. PAPP-A MoM was not predictive of development of non–insulin-dependent GDM in Chinese women.
  • There was no correlation between PAPP-A MoM and glycosylated haemoglobin level in Chinese women with GDM. PAPP-A levels were not useful to predict and identify poor glycaemic control in women with GDM.
  • There was a high prevalence of GDM (32.5%) in the Chinese population.
Implications for clinical practice or policy
  • PAPP-A and free β-human chorionic gonadotrophin do not seem to be predictive of non–insulin-dependent GDM. Other predictive model that comprises the maternal and clinical risk factors in Chinese women is warranted to identify women at risk of GDM.
  • Further studies that employ the new diagnostic criteria for GDM are warranted to examine the potential of first-trimester biochemical markers to predict GDM as well as their influence on the prevalence of GDM in the Chinese population.
 
 
Introduction
Gestational diabetes mellitus (GDM) is defined as carbohydrate intolerance of any degree that starts or is first recognised during pregnancy.1 The prevalence of GDM in pregnant women varies widely in different populations and is highly dependent on the screening and diagnosis strategies that are used.2 In the 1990s, the prevalence of GDM in Hong Kong was approximately 14.2%.3 Studies in China and the United States show that the incidence of GDM has been increasing in recent years,4 5 thus increasing the risk of complications for both mother and child during pregnancy, childbirth, and beyond.6 Notably, it is reported that high first-trimester glucose levels are associated with an increased risk of a diagnosis of GDM later in pregnancy and adverse pregnancy outcome.7 This suggests that women who will develop GDM can exhibit metabolic alterations early in pregnancy. Thus, it is of interest to determine whether pregnant women who develop GDM exhibit changes to first-trimester biochemical markers. If so, such markers can allow early detection and treatment of women at risk of GDM, and thus reduce the associated morbidity.8 9
 
In Hong Kong, all women undergo first-trimester screening for Down syndrome using a combination of maternal age, maternal free β-human chorionic gonadotrophin (β-HCG), pregnancy-associated plasma protein-A (PAPP-A), and fetal nuchal translucency (NT) thickness at 11–13+6 weeks of gestation. Studies have shown that low free β-HCG and PAPP-A levels in the first trimester are associated with pregnancy complications.10 11 In particular, low PAPP-A levels are significantly associated with spontaneous fetal loss, low-birth-weight babies, intra-uterine growth restriction, pregnancy-induced hypertension, pre-eclampsia, preterm rupture of membranes, and placental abruption.12 13 14 Several studies have shown that women with pre-existing diabetes mellitus (DM) have significantly lower PAPP-A levels than those without DM.11 15 16 17 18 Besides, PAPP-A levels in non-pregnant individuals with type 2 DM correlate inversely with glycosylated haemoglobin (HbA1c) levels.19 These observations suggest that PAPP-A levels may reflect the degree of glycaemic control. Studies of PAPP-A levels in patients with GDM have yielded conflicting results, however. In addition, such studies in Chinese women, who are well known to have a high prevalence of GDM, have not been performed.
 
The primary objective of this study was to investigate whether Chinese women with GDM exhibit changes in PAPP-A multiple of median (MoM) in the first trimester. The secondary objectives were to investigate whether PAPP-A level was an independent predictor of GDM, especially for early onset of GDM; whether PAPP-A MoM correlated with glycaemic control in women with GDM; and the prevalence of GDM in the Chinese population.
 
Methods
This prospectively collected case series was conducted between April and July 2014 at the obstetric unit of Pamela Youde Nethersole Eastern Hospital, which is a public tertiary care hospital in Hong Kong. Ethical approval for the study was obtained from the local institutional human research ethics committee.
 
All consecutive Chinese women with a singleton pregnancy who attended the hospital for their first antenatal visit (before 14 weeks of gestation) during the recruitment period were invited to participate in this study. Written informed consent was obtained from all women who agreed to participate. Women with a multiple pregnancy, pre-existing DM, chronic disease (eg renal disease, hypertension, connective tissue disease), miscarriage, termination of pregnancy, a fetus with a chromosomal or congenital abnormality, or preterm delivery before an oral glucose tolerance test (OGTT) could be performed were excluded.
 
Universal first-trimester Down syndrome screening was performed using fetal NT and maternal biochemistry. The ultrasound machine used was the Voluson E8 Expert (GE Healthcare, Fairfield [CT], US) or iU22 (Philips Medical System, Bothell [WA], US) equipped with a 3-5 MHz convex/broadband transducer. To determine crown rump length and NT thickness, the protocols outlined by the Fetal Medicine Foundation were followed.20 The serum levels of free β-HCG and PAPP-A were measured by the DELFIA Xpress analytical platform (PerkinElmer Life Sciences, Turku, Finland). Multiple of median was adjusted for maternal weight and ethnicity. Down syndrome risk was calculated using the Alpha software (Logical Medical Systems, London, UK).
 
The demographic and clinical data were routinely collected by an obstetrician during the first antenatal visit and were entered into the hospital electronic system (antenatal record system). Maternal weight, height, and blood pressure were measured and body mass index (BMI) was calculated.
 
All women who had one or more risk factors for the development of GDM, such as advanced maternal age (≥35 years), previous GDM, family history of DM (first-degree relative with DM), a previous macrosomic baby (≥4.0 kg), an unexplained stillbirth, significant glycosuria, or obesity (BMI ≥25 kg/m2) underwent an early 75-g OGTT after the initial visit. The OGTT results were interpreted according to the World Health Organization (WHO) 1999 criteria.21 Gestational DM was diagnosed if the fasting blood glucose level was ≥7.0 mmol/L or if the 2-hour OGTT blood glucose level was ≥7.8 mmol/L. All low-risk women and those with normal early OGTT results underwent universal 75-g OGTT screening at around 28 to 30 weeks. Women with a diagnosis of GDM underwent a further blood test 2 to 3 weeks after the initial diagnosis to determine HbA1c level. They were also given dietary and exercise advice and encouraged to perform daily capillary blood glucose monitoring before and 2 hours after a meal. If the pre- and post-meal glucose levels frequently exceeded 6.0 and 7.8 mmol/L, respectively, the women were prescribed insulin. All participating women received routine antenatal care until delivery according to our department protocol.
 
All statistical analyses were performed using PASW Statistics 18, Release Version 18.0.0 (SPSS Inc, 2009, Chicago [IL], US). Categorical data were analysed using the Chi squared test or Fisher’s exact test, depending on the data distribution. For continuous variables with a normal distribution, the independent t test was used. For continuous data with a highly skewed distribution, a non-parametric test (ie Mann-Whitney U test) was used.
 
Sample size was calculated based on two assumptions. First, about 25% of the population screened will have GDM, according to a previous local study22 and our departmental annual audit. Second, there was a 10% difference in PAPP-A MoM between a GDM and non-GDM group, according to a previous published series.23 Based on these assumptions, a total sample size of 380 cases with 95 cases in the GDM group and 285 cases in the non-GDM group were required for a type 1 error of 0.05, power of 80%, and standard deviation of 0.3 in both groups.
 
Results
The study sample is summarised in the Figure. In total, 520 women participated in the study of whom 157 (30.2%) underwent early OGTT. Indications for early OGTT are summarised in Table 1. Overall, GDM was diagnosed in 169 women. Among them, 43 (25.4%) had an early diagnosis of GDM. All GDM cases were diagnosed based on a 2-hour OGTT blood glucose level of ≥7.8 mmol/L; none had a fasting blood glucose level of ≥7.0 mmol/L (Table 2). The remaining 351 women did not develop GDM. The GDM prevalence was 32.5%. No woman underwent preterm delivery before OGTT. There was no difference in baseline characteristics between those excluded (eg defaulter and decliner) and those included in the analysis. The majority (n=167; 98.8%) of women with GDM were managed with diet alone. Only two (1.2%) required insulin.
 

Figure. Summary of the study population
 

Table 1. Indications for early oral glucose tolerance test
 

Table 2. Prevalence of GDM and GDM diagnosed by each blood glucose measure with different diagnostic criteria
 
The maternal characteristics of the women with and without GDM are shown in Table 3. Compared with the non-GDM group, women in the GDM group were significantly older (34 vs 32 years), had a higher parity (1 vs 0) and a higher BMI (22.5 vs 21.3 kg/m2). They were also more likely to have conceived with assisted reproductive technology and to have a family history of DM and a history of GDM. The two groups did not differ in terms of PAPP-A MoM (P=0.40) or free β-HCG MoM (P=0.29), however.
 

Table 3. Demographic and clinical characteristics of women with and without GDM
 
Compared with the non-GDM group, women with an early diagnosis of GDM had a non-significant reduction in PAPP-A MoM (median, interquartile range: 0.86, 0.57-1.23 vs 0.99, 0.67-1.44; P=0.11). There was also a non-significant reduction in PAPP-A MoM (median, interquartile range: 0.86, 0.57-1.23 vs 1.02, 0.72-1.61; P=0.07) in the women with early-onset GDM compared with those who had late-onset GDM (their early OGTT result was normal but subsequent routine OGTT result at 28 weeks was abnormal). Only two women with GDM required insulin treatment: their PAPP-A MoM was 0.54 and 0.78, which was low when compared with that of women with GDM who did not require insulin treatment or with the non-GDM group.
 
In this study, 308 (59.2%) women were nulliparous. Among them, GDM was diagnosed in 83 women. Compared with the non-GDM group, nulliparous women with GDM had no significant change in PAPP-A MoM (median, interquartile range: 0.92, 0.63-1.27 vs 1.0, 0.72-1.46; P=0.08).
 
Although univariate analysis showed that the women with and without GDM did not differ significantly in PAPP-A MoM, it is possible that an association between GDM and PAPP-A MoM was obscured by confounding variables. To identify potential confounding variables, Spearman’s rho correlation coefficient analysis was performed (Table 4). It revealed that PAPP-A MoM did not correlate with maternal age, height, parity, or NT. There was a significant but weak correlation between PAPP-A MoM and free β-HCG MoM (r=0.2). Since univariate analysis showed that free β-HCG MoM was not associated with GDM (P=0.29), its confounding effect would be minimal. Thus, an association between GDM and PAPP-A MoM was not detected.
 

Table 4. Correlations of pregnancy-associated plasma protein-A multiple of median with maternal demographic and clinical characteristics
 
Our study showed that with maternal risk factor screening strategies, only 157 (30.2%) women would undergo OGTT (Fig). If we screened at-risk women by early OGTT alone, only 43 (25.4%) cases of GDM would be identified. On the other hand, if we subjected at-risk women to early OGTT followed by 28-week OGTT for those who had a normal early OGTT, 83 (49.1%) cases of GDM would be identified.
 
Although we lacked 1-hour data, we tried to determine whether PAPP-A was associated with GDM based on new diagnostic criteria from the American Diabetes Association (ADA), the International Association of Diabetes and Pregnancy Study Groups (IADPSG),24 and WHO 2013.25 A total of 23 women in whom GDM was diagnosed during early pregnancy based on WHO 1999 criteria (but normal by WHO 2013 criteria) did not undergo a second OGTT and were excluded from analysis. The application of the fasting or 2-hour criteria led to 92 (18.5%) women being identified with GDM. The majority (76%) of women were diagnosed with GDM based on a 2-hour glucose level of ≥8.5 mmol/L (Table 2). Nevertheless, the GDM group again did not differ to the non-GDM group in terms of PAPP-A MoM (median, interquartile range: 0.94, 0.67-1.34 vs 0.99, 0.66-1.43; P=0.52) or free β-HCG MoM (1.02, 0.71-1.56 vs 1.03, 0.72-1.61; P=0.80).
 
To determine whether PAPP-A MoM and HbA1c levels in women with GDM correlated with each other, Spearman’s rho correlation coefficient was used. A correlation was not found (r=0.027; P=0.74).
 
Discussion
The present study showed that Chinese women with GDM did not exhibit a significant change in PAPP-A MoM during the first trimester. Women with early-onset GDM had a non-significant decrease in PAPP-A MoM when compared with non-GDM women or women with late-onset GDM. Nevertheless, first-trimester PAPP-A MoM was not a useful predictor for development of GDM or early-onset GDM. This is consistent with the results of three other studies18 26 27 but contradicts others.8 9 11 23 28 29 These published series are summarised in Table 5.8 9 11 18 23 26 27 28 29 There are several possible explanations for the different results of these studies, including ours.
 

Table 5. Summary of published studies on first-trimester biochemical marker concentrations in women who develop gestational diabetes mellitus8 9 11 18 23 26 27 28 29
 
First, the studies differed in the selection criteria used to determine when OGTT should be performed, which in turn would target a different study population: some women were tested on the basis of GDM risk factors,23 some when the women had an abnormal random blood glucose level11 18 or 50-mg glucose challenge test,9 28 others as a universal screening test as in our study.8 27
 
Second, the studies differed in terms of the OGTT method (75-g 2 hours, 100-g 3 hours, 100-g 2 hours) and diagnostic criteria. Tran et al30 showed that GDM varied substantially in the same population by different diagnostic criteria: 5.9% ADA, 20.4% IADPSG, and 24.3% WHO 1999.
 
Third, the studies may differ in GDM severity, as reflected by the proportion of women with GDM who required insulin treatment. Women with GDM who require insulin may have a more severe type of GDM or undiagnosed pre-existing DM. Lovati et al8 showed that women with GDM had a significantly lower PAPP-A MoM if they received insulin therapy than women with GDM who were managed by diet (0.56 vs 0.76 MoM; P<0.001). Beneventi et al29 showed a similar result that PAPP-A MoM was significantly lower in GDM managed with insulin treatment than GDM without (0.87 vs 1.11 MoM; P=0.031). These studies showed that insulin-dependent GDM was more strongly correlated with lower PAPP-A MoM. There were, however, only two (1.2%) women with GDM in our study who required insulin, a much lower frequency compared with other study populations (12%-100%).8 9 11 18 23 26 27 28 29 Although both women had a lower PAPP-A MoM than women with non–insulin-treated GDM or non-GDM group, such a small proportion is insufficient to determine whether PAPP-A MoM differs significantly between women with insulin-treated GDM and non–insulin-treated women with GDM. The low frequency of insulin treatment in our study population may imply that the majority of affected Chinese women had mild GDM and may also explain why our study population did not exhibit changes in PAPP-A MoM during the first trimester.
 
Fourth, it is known that PAPP-A and free β-HCG are influenced by other maternal or pregnancy variables such as gestational age,11 maternal weight,9 28 and smoking.26 Corrections for these variables were taken into account when calculating the MoM of PAPP-A and free β-HCG. While different laboratories may have corrected the MoM of PAPP-A and free β-HCG differently using maternal or pregnancy variables, this may have introduced bias in the assessment of the association between these biochemical markers and GDM.
 
The HAPO study led to considerable debate about the definition of GDM.6 31 As a result, ADA, IADPSG,24 and WHO 201325 have recently suggested that GDM is diagnosed on the basis of 75-g OGTT and fasting, 1-hour, or 2-hour glucose levels of ≥5.1, ≥10.0, and ≥8.5 mmol/L as the threshold, respectively. Since we had the fasting and 2-hour glucose data (1-hour glucose data were not available), we reclassified our patients with GDM accordingly. After reclassification, PAPP-A and free β-HCG MoM in women with GDM did not differ to that of women without GDM. Our reclassification had limitations, however. A total of 23 women who were diagnosed with GDM during early pregnancy using old WHO 1999 criteria (but normal by WHO 2013 criteria) did not undergo second OGTT so it is unknown whether their results of a second OGTT would be normal or diagnosed as GDM based on the new WHO criteria. Further studies that employ the new diagnostic criteria for GDM are warranted to explore the potential of using first-trimester biochemical markers to predict GDM.
 
During pregnancy, PAPP-A is produced by trophoblasts and is detectable in maternal blood 28 days after conception. An experimental model found that PAPP-A was a protease of insulin growth factor binding protein 4, regulating the activity of insulin-like growth factor (IGF).32 This may be a plausible explanation for the association between PAPP-A and glycaemic control because the IGF axis is involved in glycaemic control. Human studies, however, have not provided clear evidence for a metabolic or biochemical mechanism that can explain a putative association between first-trimester PAPP-A levels and GDM. In one study, non-pregnant individuals with type 2 DM were found to have lower PAPP-A levels than non-diabetic controls, PAPP-A levels correlated inversely with HbA1c levels (r= –0.2; P=0.03).19 Another study failed to detect this correlation in pregnant women with insulin-dependent DM.17 Similarly, we identified no correlation between PAPP-A and HbA1c levels in women with GDM. These observations suggest that PAPP-A may not be useful for assessing or predicting glycaemic control in women with GDM due to the relatively short duration of women’s exposure to GDM that is confined to the latter part of pregnancy. This is particularly so in Chinese as the majority of affected women, as we have demonstrated, have mild disease only. To our knowledge, our study is the first to address this issue in women with GDM.
 
Different tools to assess risk of GDM have been proposed and most have found that previous GDM is the best predictor of subsequent GDM.33 In our population, the majority of women (59.2%) were nulliparous. We tried to investigate whether PAPP-A would be a possible predictor in this group of women. Our study showed that in nulliparous women with GDM, first-trimester PAPP-A MoM did not differ to that of women without GDM.
 
There is much debate about the screening strategies for GDM. Jensen et al34 found that risk factor–based screening was as effective as universal screening: those not identified on risk factor screening were negligible compared with the high number successfully identified. However, this may not be the case with Chinese women whose ethnicity places them at risk of GDM.35 36 37 Our study showed that with maternal clinical risk factor–based screening, less than one third of our population would undergo OGTT and about half of the GDM cases would be missed. Provided resources are available, universal screening should be considered in Chinese women.
 
Our study, which was based on universal screening, showed a high prevalence of GDM (32.5%). This prevalence was much higher than that of a study conducted by Ko et al3 in the early 1990s (14.2%). It was also higher than the HAPO study cohort in 2000-200638 that reported a prevalence of GDM in Hong Kong of 14.4%. It is worth investigating this change in the trend of GDM prevalence in Hong Kong that may be due to increasing maternal obesity, adoption of a westernised diet and lifestyle, genetic shift, or other unknown factors. Some authors have proposed that with the new GDM diagnostic criteria, the prevalence of GDM may increase further.23 This may not be the case in Chinese, however. The HAPO study38 found that in Hong Kong, a higher proportion (29%) of GDM was diagnosed based on a raised 2-hour glucose level than in other countries (6%-19%). Our study concurred with the HAPO study: all women diagnosed with GDM (WHO 1999) had a raised 2-hour glucose level only (Table 2). With the raised 2-hour glucose cut-off value in the new WHO diagnostic criteria (from ≥7.8 to ≥8.5 mmol/L), the prevalence of GDM in Chinese may not be raised. Our figure of reclassifying GDM using new diagnostic criteria without 1 hour did show a reduction in GDM prevalence. Further study using the full WHO 2013 diagnostic criteria to assess the prevalence of GDM in Chinese is warranted.
 
Departmental resources and limited manpower did not allow us to use the new WHO 2013 diagnostic criteria. Moreover, possible selection bias (eg defaulters and decliners) and possible confounding factors were not taken into account in the present study. Nevertheless all women in our study underwent routine OGTT to identify GDM, covering both low- and high-risk groups, whereas other studies were more likely to focus only on a high-risk group. Some previous studies11 15 18 have also included women with pre-existing DM.
 
This was the first study to assess the association between first-trimester PAPP-A levels and GDM in a Chinese population. It showed that the vast majority of Chinese women with GDM did not require insulin nor exhibit significant change in PAPP-A MoM during the first trimester. First-trimester PAPP-A MoM was not a useful predictor for development of GDM. A correlation between PAPP-A and HbA1c levels was not observed. Our study showed a high prevalence of GDM at 32.5%, which is higher than that in previous studies.
 
Declaration
No conflicts of interest were declared by authors.
 
References
1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009;32 Suppl 1:S62-7. Crossref
2. Galtier F. Definition, epidemiology, risk factors. Diabetes Metab 2010;36:628-51. Crossref
3. Ko GT, Tam WH, Chan JC, Rogers M. Prevalence of gestational diabetes mellitus in Hong Kong based on the 1998 WHO criteria. Diabet Med 2002;19:80. Crossref
4. Dabelea D, Snell-Bergeon JK, Hartsfield CL, Bischoff KJ, Hamman RF, McDuffie RS; Kaiser Permanente of Colorado GDM Screening Program. Increasing prevalence of gestational diabetes mellitus (GDM) over time and by birth cohort: Kaiser Permanente of Colorado GDM Screening Program. Diabetes Care 2005;28:579-84. Crossref
5. Zhang F, Dong L, Zhang CP, et al. Increasing prevalence of gestational diabetes mellitus in Chinese women from 1999 to 2008. Diabet Med 2011;28:652-7. Crossref
6. HAPO Study Cooperative Research Group, Metzger BE, Lowe LP, Dyer AR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 2008;358:1991-2002. Crossref
7. Riskin-Mashiah S, Younes G, Damti A, Auslender R. First-trimester fasting hyperglycemia and adverse pregnancy outcomes. Diabetes Care 2009;9:1639-43. Crossref
8. Lovati E, Beneventi F, Simonetta M, et al. Gestational diabetes mellitus: including serum pregnancy-associated plasma protein-A testing in the clinical management of primiparous women? A case-control study. Diabetes Res Clin Pract 2013;100:340-7. Crossref
9. Beneventi F, Simonetta M, Lovati E, et al. First trimester pregnancy–associated plasma protein-A in pregnancies complicated by subsequent gestational diabetes. Prenat Diagn 2011;31:523-8. Crossref
10. Pedersen JF, Sørensen S, Ruge S. Human placental lactogen and pregnancy-associated plasma protein A in first trimester and subsequent fetal growth. Acta Obstet Gynecol Scand 1995;74:505-8. Crossref
11. Ong CY, Liao AW, Spencer K, Munim S, Nicolaides KH. First trimester maternal serum free beta human chorionic gonadotrophin and pregnancy associated plasma protein A as predictors of pregnancy complications. BJOG 2000;107:1265-70. Crossref
12. Farina A, Rapacchia G, Freni Sterrantino A, Pula G, Morano D, Rizzo N. Prospective evaluation of ultrasound and biochemical-based multivariable models for the prediction of late pre-eclampsia. Prenat Diagn 2011;31:1147-52. Crossref
13. Montanari L, Alfei A, Albonico G, et al. The impact of first-trimester serum free beta-human chorionic gonadotropin and pregnancy-associated plasma protein A on the diagnosis of fetal growth restriction and small for gestational age infant. Fetal Diagn Ther 2009;25:130-5. Crossref
14. Dugoff L, Hobbins JC, Malone FD, et al. First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications: a population-based screening study (the FASTER Trial). Am J Obstet Gynecol 2004;4:1446-51. Crossref
15. Spencer K, Cowans NJ, Spencer CE, Achillea N. A re-evaluation of the influence of maternal insulin-dependent diabetes on fetal nuchal translucency thickness and first-trimester maternal serum biochemical markers of aneuploidy. Prenat Diagn 2010;30:937-40. Crossref
16. Kuc S, Wortelboer EJ, Koster MP, de Valk HW, Schielen PC, Visser GH. Prediction of macrosomia at birth in type-1 and 2 diabetic pregnancies with biomarkers of early placentation. BJOG 2011;118:748-54. Crossref
17. Pedersen JF, Sørensen S, Mølsted-Pedersen L. Serum levels of human placental lactogen, pregnancy-associated plasma protein A and endometrial secretory protein PP14 in first trimester of diabetic pregnancy. Acta Obstet Gynecol Scand 1998;77:155-8. Crossref
18. Savvidou MD, Syngelaki A, Muhaisen M, Emelyanenko E, Nicolaides KH. First trimester maternal serum free β-human chorionic gonadotropin and pregnancy-associated plasma protein A in pregnancies complicated by diabetes mellitus. BJOG 2012;119:410-6. Crossref
19. Pellitero S, Reverter JL, Pizarro E, et al. Pregnancy-associated plasma protein-a levels are related to glycemic control but not to lipid profile or hemostatic parameters in type 2 diabetes. Diabetes Care 2007;30:3083-5. Crossref
20. Spencer K, Souter V, Tul N, Snijders R, Nicolaides KH. A screening program for trisomy 21 at 10-14 weeks using fetal nuchal translucency, maternal serum free beta-human chorionic gonadotropin and pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol 1999;4:231-7. Crossref
21. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1. Diagnosis and classification of diabetes mellitus. WHO/NCD/NCS/99.2. Geneva: World Health Organization; 1999.
22. Li KE, Cheung YS, Lau BY. Use of fasting plasma glucose and haemoglobin A1c in screening for gestational diabetes mellitus in high-risk antenatal patients in Hong Kong. Hong Kong J Gynaecol Obstet Midwifery 2014;14:31-7.
23. Spencer K, Cowans NJ. The association between gestational diabetes mellitus and first trimester aneuploidy screening markers. Ann Clin Biochem 2013;50:603-10. Crossref
24. International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger BE, Gabbe SG, Persson B, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010;33:676-82. Crossref
25. Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy. WHO_NMH_MND_13.2_eng. Geneva: World Health Organization; 2013. Available from: http://www.who.int/iris/handle/10665/85975. Accessed 5 Dec 2013.
26. Tul N, Pusenjak S, Osredkar J, Spencer K, Novak-Antolic Z. Predicting complications of pregnancy with first-trimester maternal serum free-betahCG, PAPP-A and inhibin-A. Prenat Diagn 2003;23:990-6. Crossref
27. Husslein H, Lausegger F, Leipold H, Worda C. Association between pregnancy-associated plasma protein-A and gestational diabetes requiring insulin treatment at 11-14 weeks of gestation. J Matern Fetal Neonatal Med 2012;25:2230-3. Crossref
28. Kulaksizoglu S, Kulaksizoglu M, Kebapcilar AG, Torun AN, Ozcimen E, Turkoglu S. Can first-trimester screening program detect women at high risk for gestational diabetes mellitus? Gynecol Endocrinol 2013;29:137-40. Crossref
29. Beneventi F, Simonetta M, Locatelli E, et al. Temporal variation in soluble human leukocyte antigen-G (sHLA-G) and pregnancy-associated plasma protein A (PAPP-A) in pregnancies complicated by gestational diabetes mellitus and in controls. Am J Reprod Immunol 2014;72:413-21. Crossref
30. Tran TS, Hirst JE, Do MA, Morris JM, Jeffery HE. Early prediction of gestational diabetes mellitus in Vietnam: clinical impact of currently recommended diagnostic criteria. Diabetes Care 2013;36:618-24. Crossref
31. Moses RG. New consensus criteria for GDM: problem solved or a pandora’s box? Diabetes Care 2010;33:690-1. Crossref
32. Lawrence JB, Oxvig C, Overgaard MT, et al. The insulin-like growth factor (IGF)–dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc Natl Acad Sci USA 1999;96:3149-53. Crossref
33. Teede HJ, Harrison CL, Teh WT, Paul E, Allan CA. Gestational diabetes: development of an early risk prediction tool to facilitate opportunities for prevention. Aust N Z J Obstet Gynaecol 2011;51:499-504. Crossref
34. Jensen DM, Mølsted-Pedersen L, Beck-Nielsen H, Westergaard JG, Ovesen P, Damm P. Screening for gestational diabetes mellitus by a model based on risk indicators: a prospective study. Am J Obstet Gynecol 2003;189:1383-8. Crossref
35. American Diabetic Association. Gestational diabetes mellitus. Diabetes Care 1998;21 Suppl 1:S60-1. Crossref
36. Alberti KG, Zinnet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications; Part 1 : Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabet Med 1998;15:539-53. Crossref
37. Naylor CD, Sermer M, Chen E, Farine D. Selective screening for gestational diabetes mellitus. Toronto Trihospital Gestational Diabetes Project Investigators. N Engl J Med 1997;337:1591-6. Crossref
38. Sacks DA, Hadden DR, Maresh M, et al. Frequency of gestational diabetes mellitus at collaborating centers based on IADPSG consensus panel–recommended criteria: the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study. Diabetes Care 2012;35:526-8. Crossref

Prevalence of pre-sarcopenia and sarcopenia in Hong Kong Chinese geriatric patients with hip fracture and its correlation with different factors

Hong Kong Med J 2016 Feb;22(1):23–9 | Epub 18 Dec 2015
DOI: 10.12809/hkmj154570
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Prevalence of pre-sarcopenia and sarcopenia in Hong Kong Chinese geriatric patients with hip fracture and its correlation with different factors
Angela WH Ho, FHKCOS, FHKAM (Orthopaedic Surgery)1; Mianne ML Lee, BSc, MSc2; Eunice WC Chan, BSc, MSc2; Heddy MY Ng, BSc, MSc2; CW Lee, BSc2; WS Ng, BSc, MSc2; SH Wong, FHKCOS, FHKAM (Orthopaedic Surgery)1
1 Department of Orthopaedics and Traumatology, Caritas Medical Centre, Shamshuipo, Hong Kong
2 Department of Occupational Therapy, Caritas Medical Centre, Shamshuipo, Hong Kong
 
Corresponding author: Dr Angela WH Ho (angelaho@alumni.cuhk.net)
 
An earlier version of this paper was presented at WCO-IOF-ESCEO (World Congress on Osteoporosis, Osteoarthritis and Musculoskeletal Disease, International Osteoporosis Foundation) held in Milan, Italy on 28 March 2015.
 
 Full paper in PDF
Abstract
Introduction: Sarcopenia and osteoporosis are age-related declines in the quantity of muscle and bone, respectively. Both contribute in disability, fall, and hip fracture in the elderly. This study reported the prevalence of sarcopenia in Chinese geriatric patients with hip fracture, and the correlation between relative appendicular skeletal muscle mass index and other factors.
 
Methods: This case series was conducted in Kowloon West Cluster Orthopaedic Rehabilitation Centre in Hong Kong. Data of all geriatric patients with primary hip fracture admitted to the above Centre from June to December 2014 were studied. Isometric grip strength, the maximal handgrip strength, was measured using a JAMAR hand dynamometer. Body composition including appendicular and whole-body lean body mass was measured using dual-energy X-ray absorptiometry. Pearson’s correlation was used to examine the correlation between relative appendicular skeletal muscle mass index and other factors.
 
Results: A total of 239 patients with a mean age of 82 years were included in the study. Stratifying patients as male or female, the mean (± standard deviation) hand grip strength was 20.6 ± 7.3 kg and 13.6 ± 4.5 kg, the mean relative appendicular skeletal muscle mass index was 5.72 ± 0.83 kg/m2 and 4.87 ± 0.83 kg/m2, and the mean hip bone mineral density was 0.696 ± 0.13 g/cm2 and 0.622 ± 0.12 g/cm2, respectively. The prevalence of sarcopenia based on relative appendicular skeletal muscle mass index and hand grip strength according to the Asian Working Group for Sarcopenia definition was 73.6% in males and 67.7% in females. According to the European Working Group on Sarcopenia definition, the prevalence of pre-sarcopenia was 20.8% in males and 12.4% in females. Relative appendicular skeletal muscle mass index was positively correlated with hand grip strength, body weight, hip bone mineral density, body mass index, and total fat mass in males; and hand grip strength, body weight, body height, body mass index, and total fat mass in females. Except for body height in females, all correlations were statistically significant.
 
Conclusion: The prevalence of sarcopenia was very high in geriatric hip fracture patients, and much higher than that in community-dwelling elderly population. Apart from the need to prescribe osteoporosis medicine, sarcopenia screening and treatment should be offered and is essential to reduce subsequent fall, subsequent fracture, fracture-related complications and economic burden to Hong Kong.
 
 
New knowledge added by this study
  • The prevalence of sarcopenia was alarmingly high in geriatric hip fracture patients, and was much higher than that in studies that reported sarcopenia in community-dwelling Chinese elderly population.
Implications for clinical practice or policy
  • Apart from surgical treatment of hip fracture, a well-structured screening and treatment programme for osteoporosis and sarcopenia should be implemented in order to reduce the subsequent fall risk and fracture risk.
 
 
Introduction
Ageing is associated with changes in all body organs including body composition, skeletal muscle, and bone mass. Muscle mass decreases by 3% to 8% per decade after the age of 30 years and the rate of decline is even higher after the age of 60 years.1 2 3 Rosenberg4 first referred to this involuntary age-related loss of muscle mass as ‘sarcopeny’ in 1989. The term sarcopenia derives from the Greek words sarks (flesh) and penia (loss) and is equivalent to a process that occurs during osteoporosis. Sarcopenic individuals have a greater than 3-fold increase in falls,5 6 7 higher earlier mortality,8 9 10 and poor mobility and instrumental activity in daily living.11 Sarcopenia imposes significant costs on the health care system each year.12 It is the underlying cause of frailty, the debilitating syndrome in ageing. Functional impairment and physical disability are 2 to 3 times more likely in sarcopenic people.13 In the United States, costs related to complications of sarcopenia were estimated to be more than 18.5 billion dollars in 2000.12
 
Since 1989, several definitions of sarcopenia have been presented based on the method of measuring body composition including bio-impedance analysis, dual-energy X-ray absorptiometry (DXA), computed tomography,14 and magnetic resonance imaging.15 In 2010, the European Working Group on Sarcopenia in Older People (EWGSOP) developed a new definition for sarcopenia using the presence of both low muscle mass and low muscle function (strength or performance).16 The Working Group suggests three stages of sarcopenia: pre-sarcopenia stage, characterised by low muscle mass without change in muscle strength or performance; sarcopenia, low muscle mass plus low muscle strength or low physical performance; and severe sarcopenia, with a decrease in all three components: muscle mass, strength, and performance.
 
Inadequate protein intake is one of the main risk factors for sarcopenia.17 One study showed that the dietary intake of patients undergoing orthopaedic surgery was insufficient in terms of energy, proteins, and micronutrients.18 This situation is often due to a hypermetabolic state secondary to inflammation, to a reduced food intake due to lack of appetite and to patients being confined to bed. For all these reasons, the European Society for Parenteral and Enteral Nutrition recommends the use of nutritional supplements in older people who have experienced a hip fracture.19 A daily intake of 1.2 to 1.5 g/kg of protein has been reported to prevent sarcopenia, which is much more than the currently recommended daily dietary protein intake for adults of 0.8 g/kg/day.20 There is general agreement that the essential amino acid leucine increases protein anabolism and decreases protein breakdown.21 Vitamin D has recently received recognition as another potential intervention strategy for sarcopenia.22 23 Three registered clinical trials are currently being conducted across France, Belgium, and the United States to investigate protein nutritional supplements and sarcopenia. All trials include nutritional supplements and resistance training as interventions.
 
There is growing evidence that physical activity can slow down the loss of skeletal muscle and function.24 Exercise also reduces the likelihood of falls and fall-related injuries.24 25 While progressive resistance exercises can increase muscle strength and power exercises can increase strength and power, both have been recommended to revert sarcopenia.26 27 28
 
In Taiwan, the prevalence of sarcopenia has been reported to be 10.8% in male and 3.7% in female community-dwelling older Chinese adults aged 65 years or above using EWGSOP criteria.29 The impact of sarcopenia on osteoporotic fractures has rarely been reported, however. One study from Japan reported a lower relative skeletal muscle mass index and higher prevalence of sarcopenia in hip fracture patients.30 No data are available for Chinese patients.
 
In this study, we report the prevalence of sarcopenia in Chinese geriatric patients with hip fracture, and its correlation with different factors.
 
Methods
This was an observational study to determine the prevalence of sarcopenia, which was conducted among geriatric hip fracture patients admitted to Kowloon West Cluster Orthopaedic Rehabilitation Centre in Hong Kong. All patients aged 60 years or above admitted from June to December 2014 to Kowloon West Cluster Orthopaedic Rehabilitation Centre with operated hip fracture were recruited. All study subjects were assessed by a clinician and therapist within 3 weeks of admission. Basic demographics and anthropometric measurement data were collected.
 
Body composition
Dual-energy X-ray absorptiometry was adopted to assess sarcopenia. We used the criteria recommended by the Asian Working Group for Sarcopenia (AWGS) based on DXA study. Appendicular and whole lean body mass was measured. Appendicular skeletal muscle mass was normalised by size (sum of lean muscle mass in upper and lower limb divided by square of body height). Relative appendicular skeletal muscle mass index (RASM) was used with a cut-off value of 7 kg/m2 in men, and 5.4 kg/m2 in women according to the consensus report of the AWGS.31
 
Strength
Isometric grip strength, the maximal hand grip strength, was measured using a JAMAR hand dynamometer (Sammons Preston, US). Patients were seated with the shoulders in an anatomical position and elbows in 90° flexion. The patients were shown how to use the dynamometer and then asked to press for 3 to 5 seconds on the grip using the greatest possible force. The measurement was repeated after a 30-second rest. Both hands were measured separately and the highest score was registered. In order to reduce variability, measurement was taken in a standardised manner. We used <26 kg for men and <18 kg for women according to the cut-off values recommended by AWGS.31
 
The prevalence of sarcopenia was reported as the mean of RASM and hand grip strength. To find a significant relationship between RASM and other factors (age, hand grip strength, body weight, body height, hip bone mineral density [BMD], and total fat mass), Pearson’s correlation was performed in each group. A P value of <0.05 was considered statistically significant. Analysis was performed using the Statistical Package for the Social Sciences (Windows version 20.0; SPSS Inc, Chicago [IL], US).
 
Results
There were 239 patients (72 men and 167 women) in this study. Their mean age was 82 years, with 81.5 years for males and 82.2 years for females. By stratifying individuals as male or female, the mean (± standard deviation) body weight was 54.1 ± 9.8 kg and 48.9 ± 9.9 kg, respectively. Respective mean hand grip strength was 20.6 ± 7.3 kg and 13.6 ± 4.5 kg. Dual-energy X-ray absorptiometry was performed 14 days (mean; range, 3-28 days) after fall. Using the cut-off value recommended by AWGS, the 95% centile was lower than the cut-off value (Fig 1). The mean hip BMD for males and females was 0.696 ± 0.13 g/cm2 and 0.622 ± 0.12 g/cm2, mean hip T-score was -2.23 and -2.67, and the mean RASM was 5.72 ± 0.83 kg/m2 and 4.87 ± 0.83 kg/m2, respectively (Table 1). Age- and sex-specific RASM are shown in Figure 2. For males, RASM declined as age increased. For females, a lower RASM was observed in the youngest and the oldest patients. The prevalence of sarcopenia based on AWGS definition (RASM <7 kg/m2 for men and <5.4 kg/m2 for women, together with hand grip strength <26 kg for men and <18 kg for women) was 73.6% in males and 67.7% in females. According to EWGSOP, the prevalence of pre-sarcopenia was 20.8% in males and 12.4% in females. The prevalence of femoral neck osteoporosis based on hip T-score of <–2.5 was 47.8% in males and 59.1% in females.
 

Figure 1. Plot of (a) mean hand grip strength, (b) relative appendicular skeletal muscle mass index (RASM), and (c) hip T-score in male and female patients
The horizontal lines within the boxes represent the medians, the lower and upper bounds of the boxes represent the 25th and 75th percentiles, and the I bars represent the 5th and 95th percentiles; the circles indicate outliners
 

Table 1. Characteristics of participants, body composition, and relative appendicular skeletal muscle mass index (RASM) in both males and females
 

Figure 2. Relative appendicular skeletal muscle mass index (RASM) in different sex and age-group
The triangles indicate the means, and the vertical lines indicate the 95% confidence intervals
 
The relationship between RASM and hand grip strength, body weight, hip BMD, body mass index (BMI), and total fat mass in males is shown in Figure 3 (P value from Pearson’s test). There was a positive correlation between RASM and the above parameters and all were statistically significant. In females, the relationship between RASM and hand grip strength, body weight, body height, BMI, and total fat mass is shown in Figure 4. There was a positive and statistically significant correlation between RASM and all the above parameters except body height.
 

Figure 3. Correlation of relative appendicular skeletal muscle mass index (RASM) and (a) hand grip strength, (b) body weight, (c) hip body mass density (BMD), (d) body mass index (BMI), and (e) total fat mass in male patients
 

Figure 4. Correlation of relative appendicular skeletal muscle mass index (RASM) and (a) hand grip strength, (b) body weight, (c) body height, (d) body mass index (BMI), and (e) total fat mass in female patients
 
Discussion
The prevalence of sarcopenia was 10.8% in male and 3.7% in female community-dwelling older Chinese adults aged ≥65 years based on AWGS criteria.31 Few papers have reported the prevalence of sarcopenia in hip fracture patients, and have used different definitions of sarcopenia. Table 230 32 summarises the findings.
 

Table 2. Comparison of different studies of sarcopenia in hip fracture patients30 32
 
Hida et al30 reported the prevalence of sarcopenia in hip fracture patients based on Japanese criterion (appendicular skeletal muscle mass index <5.46 kg/m2 in women and <6.87 kg/m2 in men): the figures being 44.7% in males and 81.1% in females. Di Monaco et al32 reported a sarcopenia prevalence of 64% in female hip fracture patients and 95% in male hip fracture patients, based on height-adjusted appendicular lean mass (aLM/height2). Sarcopenia was defined according to normative data from the New Mexico Elder Health Survey33 where aLM was less than 2 standard deviations below the mean of a young reference group. They showed a significant positive correlation between aLM/height2 and BMD.32
 
In our study, there was a higher prevalence of sarcopenia in both male and female patients with hip fracture, and even higher than that for community-dwelling older Chinese adults. This reveals that the problem of sarcopenia in geriatric hip fracture patients is very serious. Our study is the only one to adopt the definition proposed by the AWGS and currently accepted in literature for an Asian population. In addition, the interval between fracture and DXA assessment is important: a significant decrease in total body mass, lean mass, and BMD has been reported from 10 days to 2 months post-fracture.34 As we performed DXA on an average of 14 days following fall, the potential effect of deterioration in muscle mass after immobilisation was minimised.
 
In our study, the mean RASM in females was the lowest in the 60-64 years’ age-group. Sarcopenia may be a risk factor in this group of relatively young geriatric hip fracture patients. Further study should assess this particular group of patients to determine the correlation of sarcopenia and fracture risk.
 
The prevalence of femoral neck osteoporosis based on hip T-score of <–2.5 was 47.8% in males and 59.1% in females. For male patients the RASM was correlated with hip BMD, although a similar result was not significant in female patients (R=0.15, P=0.07). The prevalence of both osteoporosis and sarcopenia is high in geriatric hip fracture patients, and the prevalence of sarcopenia is even higher. Based on the high prevalence of both osteoporosis and sarcopenia, screening and treatment of both diseases should be targeted to geriatric patients with hip fracture.
 
Our study also showed that RASM was correlated with hand grip strength, body weight, and BMI (and total fat mass). Hence, they may be applied to screen for high-risk patients where a whole-body DXA machine or bio-impedance assessment is not available.
 
There are few potential limitations of our study. First, we only included patients with operated hip fracture. The number of non-operated hip fractures was unknown. Second, the time interval between fall and DXA measurement varied from 3 to 28 days. The period of immobilisation commencement from the date of fracture also varied. As the period of immobilisation lengthens, there will be a drop in RASM, although in our study a non-significant negative correlation between RASM and time interval between fall and DXA measurement was shown. Third, this was an unblinded study, and assessment involved several assessors. Nonetheless, these issues could be minimised by standardising the approach, and providing briefing instructions to the patient being assessed. The use of the DXA machine will not be biased since lean muscle mass is an objective measure.
 
Conclusion
Our study showed a high prevalence of osteoporosis and sarcopenia in geriatric patients with hip fracture. With an expanding elderly population, the number of such patients will increase. In addition to surgical treatment of hip fracture, a well-structured screening and treatment programme of osteoporosis and sarcopenia should be implemented in order to reduce subsequent fall, subsequent fracture, and the fracture-related complications and economic burden to Hong Kong.
 
References
1. Volpi E, Nazemi R, Fujita S. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care 2004;7:405-10. Crossref
2. Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol (1985) 2003;95:1717-27. Crossref
3. Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Singh MA. Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr 2002;76:473-81.
4. Rosenberg IH. Summary comments. Am J Clin Nutr 1989;50:1231-3.
5. Wu IC, Lin CC, Hsiung CA, et al. Epidemiology of sarcopenia among community-dwelling older adults in Taiwan: a pooled analysis for a broader adoption of sarcopenia assessments. Geriatr Gerontol Int 2014;14 Suppl 1:52-60. Crossref
6. Tanimoto Y, Watanabe M, Sun W, et al. Sarcopenia and falls in community-dwelling elderly subjects in Japan: Defining sarcopenia according to criteria of the European Working Group on Sarcopenia in Older People. Arch Gerontol Geriatr 2014;59:295-9. Crossref
7. Landi F, Liperoti R, Russo A, et al. Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr 2012;31:652-8. Crossref
8. Landi F, Liperoti R, Fusco D, et al. Sarcopenia and mortality among older nursing home residents. J Am Med Dir Assoc 2012;13:121-6. Crossref
9. Kim JH, Lim S, Choi SH, et al. Sarcopenia: an independent predictor of mortality in community-dwelling older Korean men. J Gerontol A Biol Sci Med Sci 2014;69:1244-52. Crossref
10. Vetrano DL, Landi F, Volpato S, et al. Association of sarcopenia with short- and long-term mortality in older adults admitted to acute care wards: results from the CRIME study. J Gerontol A Biol Sci Med Sci 2014;69:1154-61. Crossref
11. da Silva Alexandre T, de Oliveira Duarte YA, Ferreira Santos JL, Wong R, Lebrão ML. Sarcopenia according to the European Working Group on Sarcopenia in Older People (EWGSOP) versus dynapenia as a risk factor for disability in the elderly. J Nutr Health Aging 2014;18:547-53. Crossref
12. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 2004;52:80-5. Crossref
13. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 2002;50:889-96. Crossref
14. Heymsfield SB, Gallagher D, Visser M, Nuñez C, Wang ZM. Measurement of skeletal muscle: laboratory and epidemiological methods. J Gerontol A Biol Sci Med Sci 1995;50 Spec No:23-9.
15. Baumgartner RN, Rhyne RL, Troup C, Wayne S, Garry PJ. Appendicular skeletal muscle areas assessed by magnetic resonance imaging in older persons. J Gerontol 1992;47:M67-72. Crossref
16. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010;39:412-23. Crossref
17. Paillaud E, Bories PN, Le Parco JC, Campillo B. Nutritional status and energy expenditure in elderly patients with recent hip fracture during a 2-month follow-up. Br J Nutr 2000;83:97-103.
18. Wyers CE, Breedveld-Peters JJ, Reijven PL, et al. Efficacy and cost-effectiveness of nutritional intervention in elderly after hip fracture: design of a randomized controlled trial. BMC Public Health 2010;10:212. Crossref
19. Volkert D, Berner YN, Berry E, et al. ESPEN Guidelines on Enteral Nutrition: Geriatrics. Clin Nutr 2006;25:330-60. Crossref
20. Masanes F, Culla A, Navarro-Gonzalez M, et al. Prevalence of sarcopenia in healthy community-dwelling elderly in an urban area of Barcelona (Spain). J Nutr Health Aging 2012;16:184-7. Crossref
21. Paddon-Jones D, Rasmussen BB. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 2009;12:86-90. Crossref
22. Morley JE. Sarcopenia: diagnosis and treatment. J Nutr Health Aging 2008;12:452-6. Crossref
23. Dawson-Hughes B. Serum 25-hydroxyvitamin D and functional outcomes in the elderly. Am J Clin Nutr 2008;88:537S-540S.
24. Harber MP, Konopka AR, Douglass MD, et al. Aerobic exercise training improves whole muscle and single myofiber size and function in older women. Am J Physiol Regul Integr Comp Physiol 2009;297:R1452-9. Crossref
25. Kim HK, Suzuki T, Saito K, et al. Effect of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc 2012;60:16-23. Crossref
26. Waters DL, Baumgartner RN, Garry PJ, Vellas B. Advantages of dietary, exercise-related, and therapeutic interventions to prevent and treat sarcopenia in adult patients: an update. Clin Interv Aging 2010;5:259-70. Crossref
27. McCartney N, Hicks AL, Martin J, Webber CE. Long-term resistance training in the elderly: effects on dynamic strength, exercise capacity, muscle, and bone. J Gerontol A Biol Sci Med Sci 1995;50:B97-104. Crossref
28. Liu CJ, Latham NK. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev 2009;(3):CD002759. Crossref
29. Lee WJ, Liu LK, Peng LN, Lin MH, Chen LK; ILAS Research Group. Comparisons of sarcopenia defined by IWGS and EWGSOP criteria among older people: results from the I-Lan longitudinal aging study. J Am Med Dir Assoc 2013;14:528.e1-7. Crossref
30. Hida T, Ishiguro N, Shimokata H, et al. High prevalence of sarcopenia and reduced leg muscle mass in Japanese patients immediately after a hip fracture. Geriatr Gerontol Int 2013;13:413-20. Crossref
31. Chen LK, Liu LK, Assantachai P, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2014;15:95-101. Crossref
32. Di Monaco M, Castiglioni C, Vallero F, Di Monaco R, Tappero R. Sarcopenia is more prevalent in men than in women after hip fracture: a cross-sectional study of 591 inpatients. Arch Gerontol Geriatr 2012;55:e48-52. Crossref
33. Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 1998;147:755-63. Crossref
34. D’Adamo CR, Hawkes WG, Miller RR, et al. Short-term changes in body composition after surgical repair of hip fracture. Age Ageing 2014;43:275-80. Crossref

Assessment of postoperative short-term and long-term mortality risk in Chinese geriatric patients for hip fracture using the Charlson comorbidity score

Hong Kong Med J 2016 Feb;22(1):16–22 | Epub 18 Dec 2015
DOI: 10.12809/hkmj154451
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE    CME
Assessment of postoperative short-term and long-term mortality risk in Chinese geriatric patients for hip fracture using the Charlson comorbidity score
TW Lau, FRCS (Edin), FHKAM (Orthopaedic Surgery); Christian Fang, FRCS (Edin), FHKAM (Orthopaedic Surgery); Frankie Leung, FRCS (Edin), FHKAM (Orthopaedic Surgery)
Department of Orthopaedics and Traumatology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
 
Corresponding author: Dr TW Lau (catcherlau@hku.hk)
 
 Full paper in PDF
Abstract
Introduction: The clinical outcome of geriatric patients with hip fracture depends on surgical management as well as other medical factors. This study aimed to evaluate the relationship between Charlson comorbidity score and in-patient, 30-day, and 1-year mortality in Chinese geriatric patients who underwent surgery for hip fracture.
 
Methods: This was a historical cohort study conducted in a tertiary trauma referral centre in Hong Kong. From 1 January 2009 to 31 December 2010, 759 operated hip fracture patients who were over 65 years were recruited. The Charlson Comorbidity Index of each patient was retrieved from their medical records. The total Charlson comorbidity score, the highest Charlson comorbidity score, and the Charlson comorbidity score were calculated. The associations between these scores and in-patient, 30-day, and 1-year mortality were examined using Mann-Whitney U test and Cox regression model.
 
Results: The mean in-patient, 30-day, and 1-year mortality rate was 0.8%, 2.5%, and 16.3%, respectively. The total Charlson comorbidity score was significantly associated with in-patient mortality (P=0.031). The total Charlson comorbidity score (P<0.001) and Charlson comorbidity score (P=0.010) were significantly associated with 30-day mortality. All three scores were also significantly related to 1-year mortality (P<0.001). A Cox regression model demonstrated the relationship between total Charlson comorbidity score and 30-day and 1-year mortality. This can help predict 30-day and 1-year mortality risk in geriatric patients admitted for hip fracture surgery.
 
Conclusion: The Charlson comorbidity score provides a good preoperative indicator of 30-day and 1-year mortality in geriatric patients with hip fracture.
 
 
New knowledge added by this study
  • Charlson comorbidity score correlates well with the short-term and long-term mortality of Chinese geriatric patients with operated hip fracture.
  • Hip fracture surgery is generally safe in terms of short-term mortality rate even in high-risk patients.
Implications for clinical practice or policy
  • Preoperative assessment of geriatric patients admitted with hip fracture can provide a reasonably accurate indication of mortality risk. This helps improve patient and family rapport and subsequent satisfaction.
 
 
Introduction
The number of geriatric patients admitted to our hospital with hip fracture has been increasing steadily over the last decade. Such osteoporotic fractures are difficult to treat because of poor bone quality. The often extreme age of the patients and other comorbidities make the management of such patients even more challenging. The clinical outcome of geriatric patients with hip fracture depends on surgical management as well as many other medical factors.
 
Hip fracture is a significant cause of mortality.1 Haentjens et al2 reported a 5- to 8-fold increased risk for all-cause mortality in the first 3 months following hip fracture. Some clinical scores and assessments—for example, the American Society of Anesthesiologists (ASA) classification, the Barthel index, the Goldman index, the POSSUM (Physiological and Operative Severity Score for the enumeration of Mortality and Morbidity) scoring system, the Charlson index and the visual analogue scale for risk scale, or the cumulated ambulation score—are reported to correlate with postoperative complications and mortality of hip fracture.3 4 5 Some of these scores can predict complication rates and others better predict short-term mortality.4 6 Individual clinical parameters also correlate with mortality rates.6 7 8 9 10 11
 
Among all these scores, the Nottingham Hip Fracture Score (NHFS) is one of the most well-known for the prediction of short- and long-term mortality in geriatric hip fracture patients, and has been validated in both western and Asian populations.12 13 14 This excellent score includes patient age, sex, admission haemoglobin level, Mini-Mental State Examination (MMSE) score, previous institution, number of comorbidities, and also presence of malignancy.
 
In our hospital, a multidisciplinary hip fracture clinical pathway programme was started in 2007. The implementation of this pathway has not only shortened hospital stay, but also improved clinical outcomes, including pressure sore rate, infection rate, and mortality rate.15 To enable early patient assessment and quantification of the risks of hip fracture surgery, a score that is easy to calculate and readily obtainable should be identified. This can greatly improve the rapport between the surgeon and patient, as well as their family, with regard to the operative risks and mortality risks. The NHFS is an excellent score that has been widely validated. Nonetheless it involves assessment of the MMSE score by a therapist and is not always possible before surgery. In this retrospective study, we used the Charlson Comorbidity Index (CCI) to evaluate patient comorbidities (Table 1).
 

Table 1. Charlson Comorbidity Index
 
The objective of this study was to determine the association of the CCI in operated hip fracture in patients older than 65 years with the in-patient, 30-day, and 1-year mortality.
 
Methods
Our hospital is a tertiary trauma referral centre in Hong Kong. When geriatric patients with hip fracture present to the accident and emergency department, they are transferred to the orthopaedic ward for preoperative workup and assessment once they are stabilised. Surgery is performed within 2 days. Postoperatively, they are observed in an acute ward for a mean of 5 days before being transferred to another convalescence hospital for rehabilitation. Patients are discharged after a mean of 3 weeks.
 
From 1 January 2009 to 31 December 2010, we recruited all patients aged over 65 years who underwent surgery for geriatric hip fracture. Patients with pathological fractures, multiple fractures, or old fractures were excluded from this study. Patient records were retrieved from the electronic medical record system. Since all these patients were managed according to our hip fracture clinical pathway protocol, all demographic data, premorbid walking status, comorbidities, past surgery, complications, and also length of stay in both acute and convalescence hospitals were available. Most importantly, the in-patient, 30-day, and 1-year mortality rates could be traced. In-patient mortality was defined as death that occurred in the acute or convalescence hospital, and the 30-day and 1-year mortality was defined as death occurring within 30 days and 1 year of admission, respectively. Mortality records are available when death occurs in any public hospital in Hong Kong with an electronic medical record system.
 
The CCI was calculated from the medical records of patients admitted with hip fracture obtained from the hospital electronic medical system. The clinical history of patients was reviewed by medical officers with comorbidities recorded. The final patient outcome was not known to the medical officers unless it was recorded in the same medical records. Using the CCI, three scores can be calculated—the total Charlson comorbidity score (TCCS) is the sum of all comorbidities combined with the score derived from the patient’s age; the highest Charlson comorbidity score (HCCS) is the highest single comorbidity score of a patient; and the Charlson comorbidity score (CCS) is the sum of all comorbidity scores without consideration of age. All these scores were used to analyse and correlate with different mortality rates.
 
The independent sample Mann-Whitney U test was used to test the statistical association of different comorbidity scores and mortality rates. Receiver operating characteristic (ROC) curve was used to measure the best cut-off for the score with respect to different mortality rates. Multiple variant analysis using Cox regression model was employed to measure the survival rate of hip fracture patients with respect to the cut-off scores derived from the ROC curves. Age, sex, fracture sites, and the Charlson scores were the independent variables. This regression model can be used as a means to predict patient mortality rate before surgery is performed.
 
Results
During the 2-year period, we performed surgery on 759 geriatric patients with acute hip fracture. Among them, 28% were male and 72% were female. The mean age was 84 years: 25% aged from 70 to 79 years, 50% aged from 80 to 89 years, and 21% aged from 90 to 99 years. The oldest patient operated on was 102 years old. Overall, 72% of patients lived at home before the admission, and the remainder in a home for the elderly. With regard to premorbid mobility, 36% of them could walk unaided and 56% could walk with some form of aid such as a stick or walking frame.
 
With regard to the comorbidities, the three most common diseases were hypertension, diabetes mellitus, and dementia. Mini-Mental State Examination was used to evaluate the patients’ mental function and revealed that 65% were considered severely or moderately demented. Premorbid functional status was assessed by the modified Barthel index: 40% of patients were independent, 42% were mildly and moderately dependent, and 18% were severely or totally dependent in their daily function. The ASA score was also documented: 2.5% were ASA 1 (with normal health), 38% were ASA 2 (with mild systemic disease), and 58% were ASA 3 (with severe systemic disease). When the type of fracture was analysed, 49% were at the femoral neck and 49% the trochanter. The remaining 2% were subtrochanteric fractures. Internal fixation was performed in 75%. Among this group of internally fixed hip fractures, 24% of them were impacted fractured neck of femur that was fixed by screws only. The remaining 76% were fixed by either an extramedullary or intramedullary device for the pertrochanteric fractures. The remaining 25% of fractures were displaced fractured neck of femur, managed by hemiarthroplasty. Postoperatively, 72% of patients did not require a blood transfusion. The mean preoperative waiting time was 1.44 days. The longest waiting time was 14 days due to unstable medical conditions. The mean total length of stay in both acute and convalescence hospitals was 26.6 days.
 
The statistical analysis of the difference in mortality rates compared with the difference scores is summarised in Table 2. Among these 759 operated patients, six died in the hospital. The in-patient mortality rate was 0.8%. Within 30 days of admission, 19 patients died. The 30-day mortality rate was 2.5%. In 1-year time, 124 patients died. The 1-year mortality rate was 16.3%. Mann-Whitney analysis showed that the in-patient mortality was significantly related to the TCCS (P=0.031). Regarding the 30-day mortality rate, statistical analysis showed that it was significantly related to TCCS (P<0.001) and CCS (P=0.010). Using Spearman’s rank correlation coefficient, the TCCS was statistically correlated with HCCS and CCS. All three different scores derived from the CCI were significantly related to this 1-year mortality rate (P<0.001; Table 2).
 

Table 2. Mann-Whitney U test for detecting statistical significance between mortality and difference scores
 
An ROC curve analysis was used to identify the relationship between TCCS and mortality rates. Both 30-day mortality and 1-year mortality rates were analysed using MedCalc software (MedCalc Software, Ostend, Belgium). Both ROC findings were significant for 30-day and 1-year mortality (area under the curve=0.72 and 0.75 respectively, P<0.001). In both situations, the best cut-off value was a TCCS of ≥6 according to the Youden index method, with 30-day mortality (sensitivity 79%, specificity 59%, positive predictive value [PPV] 4.7%, and negative predictive value [NPV] 99%) and 1-year mortality (sensitivity 71%, specificity 64%, PPV 28%, and NPV 92%). Nonetheless when referring to the actual curve (Fig 1), this optimal cut-off point was not well-defined versus using the adjacent higher cut-off value of TCCS of ≥7.
 

Figure 1. ROC curve for TCCS with respect to (a) 30-day and (b) 1-year mortality
Diagonal segments were produced by ties
 
If a TCCS cut-off value of ≥7 was used, the respective value of sensitivity, specificity, PPV, and NPV was 58%, 79%, 6.5%, and 99% for 30-day mortality, and 50%, 83%, 37%, and 90% for 1-year mortality. In a clinical situation, better specificity is preferred for predicting mortality. Thus we elected to use a 3-tier stratification of patients based on their TCCS in the regression analysis—low-risk group: TCCS 0-5, borderline group: TCCS 6-7, high-risk group: TCCS ≥8. These values are shown in Table 3.
 

Table 3. TCCS correlation with 30-day and 1-year mortality
 
Cox regression model was used to demonstrate the relationship between mortality rates by using the TCCS as the predictor (Fig 2). Using a score of ≤5 (low-risk group) as baseline, when score was equal to 6 or 7 (borderline group), the 30-day and 1-year mortality hazard ratio (HR) was 3.41 (95% confidence interval [CI], 0.88-13.19; P=0.075) and 2.66 (95% CI, 1.71-4.10; P<0.001), respectively. If the score was ≥8 (high-risk group), the 30-day mortality and 1-year mortality HR was 7.93 (95% CI, 1.93-32.54; P=0.004) and 5.08 (95% CI, 3.06-8.42; P<0.001), respectively.
 

Figure 2. Cox regression model demonstrating the relationship between mortality rate and the total Charlson comorbidity score
 
The logistic regression model revealed that the 30-day mortality rate correlated with the TCCS in a good exponential relationship (Fig 3a). If the graph was analysed in more detail, it would show that operating on the hip fractures was generally safe. Even when the TCCS reached 9 points, the 30-day mortality rate remained <5%.
 

Figure 3. Logistic regression model demonstrating the relationship between (a) 30-day and (b) 1-year mortality rate and total Charlson comorbidity score (TCCS)
 
The 1-year mortality rate showed a different correlation with TCCS. The curve became more linear in shape (Fig 3b). When TCCS was <3, 1-year morality rate remained <5%. When the TCCS was >5, mortality rate rose almost linearly with the TCCS. When the TCCS was ≤10, 1-year mortality rate was approximately 50%. The increase in mortality rate appeared to plateau at TCCS of >15, where it reached 88%. An overview of our hip fracture patients reveals that there was a reasonable 1-year survival with only 10% 1-year mortality rate after hip fracture surgery if the TCCS was <5.
 
Discussion
In the last two decades, there has been an increasing attention on geriatric fragility fractures with a special focus on hip fractures.6 Many parameters are significant predictors of associated clinical outcome and mortality. These include type of injury and surgery,7 postoperative delirium,8 timing of rehabilitation,9 and surgical technique.10 11 In addition, many other preoperative indicators have been found to affect postoperative mortality. The most commonly identified factors include advanced age,16 17 18 male gender,16 18 19 poor premorbid functional capability,18 20 and presence of multiple comorbidities.21 22
 
The CCI is a system that allows classification of severity and uses recorded secondary diagnoses to assign a weight to morbidity, thereby generating the patient’s risk of death.23 This score can be combined with age to form a single index. This is particularly useful in our geriatric hip fracture patient group because our patients’ age ranged from 65 to 102 years, which is a major factor in their mortality rates.
 
We have shown that the TCCS correlates well with both short-term and long-term mortality. The TCCS includes all the comorbidities and the age of the patient and reflects the general health of the patient on admission to hospital. Thus the poorer the general health is, the higher the short-term mortality rate will be. As most of these patients require surgery to either fix or replace the fractured hip, there is additional stress on their physiologically compromised body. Although many of the common comorbidities of geriatric hip fracture patients are minor problems, such as diabetes, hypertension, or previous cerebrovascular accident, these problems are nonetheless chronic diseases that lead to gradual multi-organ dysfunction and deterioration. The most commonly affected organs are the lungs, heart, general vascular system, kidneys, and brain. Surgery poses a major stress challenge to these diseased organs and can result in a rapid decline in general health. Therefore the severity of a patient’s comorbidities has a significant prognostic implication for short-term mortality post-surgery. This explains why the TCCS correlates significantly with the in-patient and 30-day mortality rates.
 
Using the logistic regression graph correlating the TCCS and 30-day mortality rate, different TCCSs correspond to an estimated 30-day mortality rate. This is valuable information when frontline staff are required to explain the risks to the newly admitted patient and their family. Many patients and their family are concerned about the impending need for surgery, believing that surgery will lead to death of their loved one who already has multiple existing comorbidities. With the information available, we can reassure the patient about their low mortality risk, despite these multiple comorbidities. Informed discussion between the patient, their family, and the surgeon can allay fears about surgery and allow extra effort and care during the postoperative period. A more experienced surgeon and staff should be involved in care to minimise surgical trauma and the possibility of surgical complications. Geriatricians and anaesthetists should be informed about the higher incidence of major life-threatening conditions during the pre-, peri-, and post-operative period. This allows better utilisation and coordination of limited medical and human resources such as intensive care unit beds, sophisticated preoperative and postoperative monitoring machines, and specialist nursing care.
 
Analysis of the 1-year mortality rate revealed a statistically significant correlation with all scores, similar to another study.24 This is to be expected as the 1-year mortality relates more to general physical health and age, and not the hip fracture. The CCI independently predicts both short- and long-term mortality in acutely ill hospitalised elderly adults.25 In our series, the 1-year mortality rate was 16.3%, slightly lower than some studies17 but not uncommon.24 This may be partly due to the general health status of our population and may be partly due to differences in the medical system.
 
Information about short- and long-term mortality can help reassure the patient and their family and allay their fears about surgery in the presence of other comorbidities. It can alleviate some of the stress associated with uncertainty.
 
This study is not without limitations. There is a possible discrepancy between the actual number of deaths because a small number may have occurred outside of the public hospital system. As a retrospective study, we were not able to control the confounding factors that could influence the results. Although age, sex, and fracture sites were accounted in the regression model, other factors such as smoking, medications, fracture sites, surgeon experience, and surgical procedure were not included in the analysis. Possible errors in coding and rating of CCI also exist. There might also have bias in data collection for the comorbidity index if patient mortality was known during the data collection process. Nonetheless based on our results in this retrospective cohort, a prospective study should be conducted to further analyse the relationship between comorbidity and mortality of the geriatric patients with hip fracture.
 
Furthermore, non-operated hip fracture patients were not included in this study. During the study period, 15 hip fracture patients were treated conservatively. The most common reasons for non-operative treatment were being unfit for surgery or refusal of surgery by family. The 30-day mortality rate was 13.3%. The 1-year mortality rate was 20%. Both the short-term and long-term mortality rates of these non-operated patients were generally higher than that of operated patients. However, since the number of deaths was small, a statistical comparison was not performed. Interpretation of the data should also be cautious because non-operated patients are usually very fragile with pre-existing life-threatening medical conditions. These patients may have had a very high short-term mortality rate if surgery were performed that would have influenced the final statistical analysis. Nevertheless the small proportion of non-operated hip fracture patients would not have been expected to have a large effect on overall results.
 
Conclusion
In this retrospective study of the short- and long-term mortality rates of geriatric patients undergoing surgery for hip fracture, scores derived from the CCI correlated well with mortality rates. Use of CCI before surgery to assess the patients’ general health and operative risks can aid communication between the patient and doctors, and assist in deciding the best treatment option.
 
References
1. Frost SA, Nguyen ND, Center JR, Eisman JA, Nguyen TV. Excess mortality attributable to hip-fracture: a relative survival analysis. Bone 2013;56:23-9. Crossref
2. Haentjens P, Magaziner J, Colón-Emeric CS, et al. Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 2010;152:380-90. Crossref
3. Burgos E, Gómez-Arnau JI, Díez R, Muñoz L, Fernández-Guisasola J, Garcia del Valle S. Predictive value of six risk scores for outcome after surgical repair of hip fracture in elderly patients. Acta Anaesthesiol Scand 2008;52:125-31. Crossref
4. Foss NB, Kristensen MT, Kehlet H. Prediction of postoperative morbidity, mortality and rehabilitation in hip fracture patients: the cumulated ambulation score. Clin Rehabil 2006;20:701-8. Crossref
5. Kirkland LL, Kashiwagi DT, Burton MC, Cha S, Varkey P. The Charlson Comorbidity Index Score as a predictor of 30-day mortality after hip fracture surgery. Am J Med Qual 2011;26:461-7. Crossref
6. Smith T, Pelpola K, Ball M, Ong A, Myint PK. Preoperative indicators for mortality following hip fracture surgery: a systematic review and meta-analysis. Age Ageing 2014;43:464-71. Crossref
7. Smith EB, Parvizi J, Purtill JJ. Delayed surgery for patients with femur and hip fractures—risk of deep venous thrombosis. J Trauma 2011;70:E113-6. Crossref
8. Lee HB, Mears SC, Rosenberg PB, Leoutsakos JM, Gottschalk A, Sieber FE. Predisposing factors for postoperative delirium after hip fracture repair in individuals with and without dementia. J Am Geriatr Soc 2011;59:2306-13. Crossref
9. Siu AL, Penrod JD, Boockvar KS, Koval K, Strauss E, Morrison RS. Early ambulation after hip fracture: effects on function and mortality. Arch Intern Med 2006;166:766-71. Crossref
10. Cheng T, Zhang GY, Liu T, Zhang XL. A meta-analysis of percutaneous compression plate versus sliding hip screw for the management of intertrochanteric fractures of the hip. J Trauma Acute Care Surg 2012;72:1435-43. Crossref
11. Cho SH, Lee SH, Cho HL, Ku JH, Choi JH, Lee AJ. Additional fixations for sliding hip screws in treating unstable pertrochanteric femoral fractures (AO Type 31-A2): short-term clinical results. Clin Orthop Surg 2011;3:107-13. Crossref
12. Maxwell MJ, Moran CG, Moppett IK. Development and validation of a preoperative scoring system to predict 30 day mortality in patients undergoing hip fracture surgery. Br J Anaesth 2008;101:511-7. Crossref
13. Wiles MD, Moran CG, Sahota O, Moppett IK. Nottingham Hip Fracture Score as a predictor of one year mortality in patients undergoing surgical repair of fractured neck of femur. Br J Anaesth 2011;106:501-4. Crossref
14. Kau CY, Kwek EB. Can preoperative scoring systems be applied to Asian hip fracture populations? Validation of the Nottingham Hip Fracture Score (NHFS) and identification of preoperative risk factors in hip fractures. Ann Acad Med Singapore 2014;43:448-53.
15. Lau TW, Fang C, Leung F. The effectiveness of a geriatric hip fracture clinical pathway in reducing hospital and rehabilitation length of stay and improving short-term mortality rates. Geriatr Orthop Surg Rehabil 2013;4:3-9. Crossref
16. Holt G, Smith R, Duncan K, Hutchison JD, Gregori A. Gender differences in epidemiology and outcome after hip fracture: evidence from the Scottish Hip Fracture Audit. J Bone Joint Surg Br 2008;90:480-3. Crossref
17. Kannegaard PN, van der Mark S, Eiken P, Abrahamsen B. Excess mortality in men compared with women following a hip fracture. National analysis of comedications, comorbidity and survival. Age Ageing 2010;39:203-9. Crossref
18. Jamal Sepah Y, Umer M, Khan A, Ullah Khan Niazi A. Functional outcome, mortality and in-hospital complications of operative treatment in elderly patients with hip fractures in the developing world. Int Orthop 2010;34:431-5. Crossref
19. Endo Y, Aharonoff GB, Zuckerman JD, Egol KA, Koval KJ. Gender differences in patients with hip fracture: a greater risk of morbidity and mortality in men. J Orthop Trauma 2005;19:29-35. Crossref
20. Williams A, Jester R. Delayed surgical fixation of fractured hips in older people: impact on mortality. J Adv Nurs 2005;52:63-9. Crossref
21. Franzo A, Francescutti C, Simon G. Risk factors correlated with post-operative mortality for hip fracture surgery in the elderly: a population-based approach. Eur J Epidemiol 2005;20:985-91. Crossref
22. Hannan EL, Magaziner J, Wang JJ, et al. Mortality and locomotion 6 months after hospitalization for hip fracture: risk factors and risk-adjusted hospital outcomes. JAMA 2001;285:2736-42. Crossref
23. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373-83. Crossref
24. Svensson O, Strömberg L, Ohlén G, Lindgren U. Prediction of the outcome after hip fracture in elderly patients. J Bone Joint Surg Br 1996;78:115-8.
25. Frenkel WJ, Jongerius EJ, Mandjes-van Uitert MJ, van Munster BC, de Rooij SE. Validation of the Charlson Comorbidity Index in acutely hospitalized elderly adults: a prospective cohort study. J Am Geriatr Soc 2014;62:342-6. Crossref

Why do Hong Kong patients need total hip arthroplasty? An analysis of 512 hips from 1998 to 2010

Hong Kong Med J 2016 Feb;22(1):11–5 | Epub 29 Sep 2015
DOI: 10.12809/hkmj144483
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Why do Hong Kong patients need total hip arthroplasty? An analysis of 512 hips from 1998 to 2010
Vincent WK Chan, MB, BS; PK Chan, FHKCOS, FHKAM (Orthopaedic Surgery); KY Chiu, FHKCOS, FHKAM (Orthopaedic Surgery); CH Yan, FHKCOS, FHKAM (Orthopaedic Surgery); FY Ng, FHKCOS, FHKAM (Orthopaedic Surgery)
Department of Orthopaedics and Traumatology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
Corresponding author: Dr Vincent WK Chan (loveholika@gmail.com)
 
 Full paper in PDF
Abstract
Introduction: The number of patients undergoing total hip replacement surgeries has increased as a result of a rise in the ageing population. This study reviewed the demographics and disease spectrum leading to primary total hip replacement in the Chinese population from 1998 to 2010.
 
Methods: This case series was conducted in a university teaching hospital in Hong Kong. Data from the prospective joint registry of all patients who underwent primary total hip replacement from January 1998 to December 2010 were reviewed. Patients’ age and sex, diagnosis, as well as the Harris Hip Scores before operation and at the last follow-up were described.
 
Results: There were 512 primary total hip replacements performed on 419 patients (43.4% males) during the study period. All had clinical follow-up for at least 2 years. The mean age of the patients was 57.6 (standard deviation, 16.6) years. In males, the main aetiology was osteonecrosis (50.9%), ankylosing spondylitis (19.5%), and post-traumatic arthritis (8.5%). For females, it was osteonecrosis (33.0%), primary osteoarthritis (18.8%), and post-traumatic arthritis (15.8%). Alcohol-induced (52.5%) and idiopathic (40.7%) was the most common cause of osteonecrosis in males and females, respectively. The mean preoperative Harris Hip Score and that at last follow-up was 43.9 (standard deviation, 18.3) and 89.7 (standard deviation, 13.0), respectively.
 
Conclusions: Osteonecrosis was the most common aetiology leading to total hip replacement although there were different causes in both sexes leading to it. The clinical result in terms of Harris Hip Score was good for all patients who required total hip replacement.
 
New knowledge added by this study
  • This study updates the disease pattern and epidemiology underlying the need for primary total hip replacement (THR) in our local Hong Kong population. In addition, the different causes leading to osteonecrosis of the hip were analysed.
Implications for clinical practice or policy
  • The results of this study could have major implications on public health. They reveal that alcohol and its related health hazards remain a major health concern in Hong Kong. Study of the epidemiology of primary THR may enable us to better allocate our health care resources.
 
 
Introduction
Arthritis is a common clinical condition and its prevalence is increasing worldwide.1 2 3 4 More than 20% of the United States population suffer from arthritis, and it is estimated that one in four may develop symptomatic hip osteoarthritis in their lifetime.1 5 It is an important clinical problem and a major burden on the health care system. Total hip replacement (THR) significantly improves quality of life and functional disability.6 7 8 The number of THR surgeries has been increasing all around the world over the past 10 years.9 10 11 12
 
Osteoarthritis is the most common indication for THR in Caucasian populations. According to the Annual Report 2013 of the National Joint Registry for England, Wales and Northern Ireland, osteoarthritis was the most common cause of primary THR across all age-groups, accounting for more than 90% of those aged 50 years and above.10 Overall, 79.2% of primary THRs from 1992 to 2011 in the Swedish population were due to primary osteoarthritis, with a decreasing trend observed in THR for inflammatory arthritis.11 As the prevalence of hip osteoarthritis is lower in Asians,13 the disease pattern for THR would also be expected to differ. A review of primary total hip arthroplasty (THA) in the Hong Kong Chinese population from 1972 to 1997 showed that osteonecrosis was the most common cause, accounting for 45.6% of cases, while primary osteoarthritis contributed to 10.2% only.14 Singh et al15 found that in Singapore, 42% of THRs from 2004 to 2006 were due to osteonecrosis. There are no other recent updates, however.
 
In view of our ageing population and rising number of primary THRs, study of the epidemiology in our locality is important to further plan and budget our health care resources. This study reviewed the demographics and disease spectrum leading to primary THR in the Chinese population from 1998 to 2010, and attempted to identify any changes since 1997.
 
Methods
All patients who underwent primary THR at Queen Mary Hospital (QMH), a university teaching hospital in Hong Kong, from January 1998 to December 2010 were reviewed. Diagnosis was made according to clinical, radiological, and intra-operative findings and entered by the surgeon. Non-Chinese patients were excluded from further analysis. Patients’ age and sex, diagnosis, preoperative and latest Harris Hip Scores16 at follow-up were analysed. All patients had clinical follow-up for at least 2 years. The causes of THR were then compared with the data from 1972 to 1997.14 Chi squared test and Student’s t test were used for statistical analysis.
 
Results
A total of 512 THR surgeries were performed on 419 Chinese patients at QMH from January 1998 to December 2010. Of the cases, 43.4% were males and 48.4% were left hips. The mean (± standard deviation) age at the time of operation was 57.6 ± 16.6 years. The mean Harris Hip Score at the last follow-up increased significantly compared with that preoperatively (89.7 ± 13.0 vs 43.9 ± 18.3; paired t test, P<0.05) [Table 1].
 

Table 1. Demographics of primary total hip replacement in Chinese patients at Queen Mary Hospital from 1998 to 2010
 
Osteonecrosis was the most common cause of primary THR in both males and females in our study population, accounting for 50.9% and 33.0%, respectively. The second most common cause was ankylosing spondylitis in males (19.5%) and osteoarthritis in females (18.8%). Post-traumatic arthritis was the third most common cause in both males (8.5%) and females (15.8%). Rheumatoid arthritis accounted for 2.5% of primary THRs in males and 9.4% in females. Dysplasia contributed to 4.1% and 8.0% of primary THRs in males and females, respectively (Table 2).
 

Table 2. Diseases leading to primary total hip replacement in the Chinese patients at Queen Mary Hospital from 1998 to 2010
 
The underlying causes of osteonecrosis in females and males were further analysed. The cause of osteonecrosis was entered by the operating surgeon based on medical records, as well as clinical, radiological, and intra-operative findings. The most common cause of osteonecrosis was alcoholism in males (52.5%) and idiopathic osteonecrosis in females (40.7%). Steroid-induced and idiopathic osteonecrosis was the second and third most common causes in males, accounting for 26.7% and 15.0%, respectively. In females, steroid-induced and post-traumatic osteonecrosis was the second and third most common causes, accounting for 29.7% and 23.1%, respectively (Table 3).
 

Table 3. Causes of osteonecrosis in the Chinese patients receiving total hip replacement at Queen Mary Hospital from 1998 to 2010
 
Our data were compared with the results from a previous study from 1972 to 1997 of primary THR in the Chinese patients.14 We concluded that osteonecrosis remains the most common cause of primary THR in the Chinese population. Other common causes, such as post-traumatic arthritis, ankylosing spondylitis and osteoarthritis, showed no statistically significant changes. The percentage of primary THR in the Chinese population due to rheumatoid arthritis, however, has increased significantly from 3.3% to 6.3% (P=0.025; Table 414).
 

Table 4. Comparison of causes of primary total hip arthroplasty in the Chinese patients between 1972-199714 and 1998-2010
 
Discussion
Total hip replacement is a well-established surgical procedure for end-stage arthritis. The number of THR surgeries is increasing worldwide in parallel with the rising number of patients with advanced arthritis. This will place a huge socio-economic burden on our health care system in the future. Study of the epidemiology and diseases underlying the need for THR might help reduce the number of patients who progress to advanced arthritis, and in so doing, reduce the burden on our health care system. In our local community, osteonecrosis was the most common cause of primary THA from 1972 to 2010.14 Alcoholism was the most common underlying aetiology of osteonecrosis in men, accounting for more than 50% of cases. It is evident that alcoholism remains a major social and health issue in Hong Kong. The World Health Organization defines alcoholism as chronic and continual drinking or periodic consumption of alcohol, characterised by impaired self-control, frequent intoxication, and use of alcohol despite adverse consequences. There is no exact alcohol level that defines alcoholism. Alcoholism was identified as the cause of osteonecrosis in our studied patients according to the clinical context and patient’s social history. The importance of alcoholism in Hong Kong is further echoed by a publication by the Department of Health stating that alcohol consumption per capita has risen from 2004 to 2010.17 The prevalence of adult and underage drinking also increased between 2005 and 2010.17 More than 15% of drinkers in Hong Kong drank beyond the recommended daily limit in 2010.17 Local and global strategies are needed to tackle alcoholism and its associated health problems.
 
Although alcohol is a well-known risk factor for development of osteonecrosis, the pathogenesis and dose-response relationship are less established. Pathological studies in rabbits show that marrow fat cell hypertrophy and proliferation, thinning of trabecular, and increased empty osteocyte lacunae are observed in alcohol-induced osteonecrosis.18 Previous studies proposed that the alcohol exposure threshold for osteonecrosis in humans is 150 L of 100% ethanol, consumed at a rate of 400 mL of absolute ethanol weekly.19 20 More studies, however, are needed to understand the dose and duration effect of alcohol-induced osteonecrosis.
 
The Swedish Hip Arthroplasty Register, one of the earliest registries, is an excellent resource to study the demographic pattern of joint replacement in Caucasians. According to their Annual Report 2011, the number of primary THRs steadily increased from 14 312 in 2007 to 15 945 in 2011.11 Primary osteoarthritis of the hip has been the most common cause of THA in Sweden for more than 20 years, accounting for 83% in 2011, while idiopathic osteonecrosis only contributed to 3.2% in 2011.11 On the contrary, our study showed that osteonecrosis is the most common cause of THR in the Chinese population and osteoarthritis accounts for only 12.5%. Such discrepancy is also observed in other studies in Asian populations. A recent publication in India found that osteonecrosis was the most common indication for THR, accounting for 49% of those performed from 2006 to 2012.21 In Singapore, 42% of THRs were due to osteonecrosis from 2004 to 2006.15 Although the exact underlying mechanism is unclear, the prevalence of hip osteoarthritis has been shown to be lower in Orientals than Caucasians.13
 
The proportion of primary THR performed in Sweden for inflammatory arthritis decreased over a period of 5 years, from 2.08% in 2007 to 1.51% in 2011.11 In the Hong Kong population, however, the proportion of THR performed for rheumatoid arthritis increased between 1972-1997 and 1998-2010. We postulate that such discrepancy is due to our delay in adopting an early strict treatment strategy for rheumatoid arthritis. It has been shown by various studies that joint destruction occurs early in the course of rheumatoid arthritis.22 23 24 Early disease control is essential to prevent joint destruction and hence, need for joint replacement surgery. Such a concept had been incorporated in the European League Against Rheumatism treatment guideline of 2007.22 Despite this, it is only recently that the Hong Kong Society of Rheumatology has modified the local treatment guidelines on rheumatoid arthritis.25 Future epidemiological study might be needed to observe any changes in primary THR requirement for rheumatoid patients.
 
In this study, the disease leading to THR was entered by the operating surgeon based on clinical, radiological, and intra-operative assessments. Nonetheless, the underlying aetiology is sometimes difficult to determine in patients with end-stage arthritis and those with multiple risk factors. This causes possible information bias, and is a limitation of this study.
 
All data within the study period were pooled for analysis. Hence, any significant changes within the period from 1998 to 2010 might have been missed. In addition, data from this study were limited to a regional hospital in Hong Kong and generalisation of the results to the present Chinese population might not be accurate. A total of 15 hospitals were performing THR within the study period, and QMH accounted for 15% of surgeries. As a university teaching hospital, QMH also serves as a tertiary and quaternary referral centre in Hong Kong, and may therefore encounter a different disease spectrum compared with peripheral hospitals in Hong Kong. We believe a territory or nationwide joint registry, such as the Swedish Hip Arthroplasty Register or National Joint Registry (for England, Wales, Northern Ireland), is needed for more representative results. In view of the rising number of patients who suffer from advanced arthritis and hence, the rising number of joint replacement surgeries, the setting up of a joint registry is important for further research and budgeting of our health care resources.
 
References
1. Centers for Disease Control and Prevention (CDC). Prevalence of doctor-diagnosed arthritis-attributable activity limitation—United states, 2003-2005. MMWR Morb Mortal Wkly Rep 2006;55:1089-92.
2. Centers for Disease Control and Prevention (CDC). Prevalence of disabilities and associated health conditions among adults—United States, 1999. MMWR Morb Mortal Wkly Rep 2001;50:120-5.
3. Stoddard S, Jans L, Ripple J, Kraus L. Chartbook on work and disability in the United States, 1998: an InfoUse report. Washington DC: US National Institute on Disability and Rehabilitation Research; 1998.
4. Hootman JM, Helmick CG. Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum 2006;54:226-9. Crossref
5. Murphy LB, Helmick CG, Schwartz TA, et al. One in four people may develop symptomatic hip osteoarthritis in his or her lifetime. Osteoarthritis Cartilage 2010;18:1372-9. Crossref
6. Ibrahim SA. Racial variations in the utilization of knee and hip joint replacement: an introduction and review of the most recent literature. Curr Orthop Pract 2010;21:126-31. Crossref
7. Chang RW, Pellisier JM, Hazen GB. A cost-effectiveness analysis of total hip arthroplasty for osteoarthritis of the hip. JAMA 1996;275:858-65. Crossref
8. Emejuaiwe N, Jones AC, Ibrahim SA, Kwoh CK. Disparities in joint replacement utilization: a quality of care issue. Clin Exp Rheumatol 2007;25(6 Suppl 47):44-9.
9. Singh JA, Vessely MB, Harmsen WS, et al. A population-based study of trends in the use of total hip and total knee arthroplasty, 1969-2008. Mayo Clinic Proc 2010;85:898-904. Crossref
10. National Joint Registry for England, Wales and Northern Ireland 10th Annual Report; 2013.
11. The Swedish Hip Arthroplasty Register Annual Report 2011; 2012.
12. Lai YS, Wei HW, Cheng CK. Incidence of hip replacement among national health insurance enrollees in Taiwan. J Orthop Surg Res 2008;3:42. Crossref
13. Lau EM, Symmons DP, Croft P. The epidemiology of hip osteoarthritis and rheumatoid arthritis in the Orient. Clin Orthop Relat Res 1996;(323):81-90. Crossref
14. Chiu KY, Ng TP, Poon KC, Ho WY, Yau WP. Primary total hip replacement in Hong Kong Chinese—a review of 647 hips. Hong Kong J Orthop Surg 1998;2:114-9.
15. Singh G, Krishna L, Das De S. The ten-year pattern of hip diseases in Singapore. J Orthop Surg (Hong Kong) 2010;18:276-8.
16. Harris WH. Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 1969;51:737-55.
17. Alcohol and health: Hong Kong situation. Hong Kong SAR: Department of Health. Available from: http://www.dh.gov.hk/english/pub_rec/pub_rec_ar/pdf/ncd_ap2/action_plan_2_alcohol%20and%20health%20HK%20situation_e.pdf. Accessed Sep 2015.
18. Wang Y, Yin L, Li Y, Liu P, Cui Q. Preventive effects of puerarin on alcohol-induced osteonecrosis. Clin Orthop Related Res 2008;466:1059-67. Crossref
19. Cruess RL. Osteonecrosis of bone. Current concepts as to etiology and pathogenesis. Clin Orthop Related Res 1986;(208):30-9.
20. Jones JP Jr. Concepts of etiology and early pathogenesis of osteonecrosis. Instr Course Lect 1994;43:499-512.
21. Pachore JA, Vaidya SV, Thakkar CJ, Bhalodia HK, Wakankar HM. ISHKS joint registry: A preliminary report. Indian J Ortho 2013;47:505-9. Crossref
22. Combe B, Landewe R, Lukas C, et al. EULAR recommendations for the management of early arthritis: report of a task force of the European Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 2007;66:34-45. Crossref
23. Bakker MF, Jacobs JW, Verstappen SM, Bijlsma JW. Tight control in the treatment of rheumatoid arthritis: efficacy and feasibility. Ann Rheum Dis 2007;66 Suppl 3:iii56-60. Crossref
24. Grigor C, Capell H, Stirling A, et al. Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. Lancet 2004;364:263-9. Crossref
25. Mok CC, Tam LS, Chan TH, Lee GK, Li EK; Hong Kong Society of Rheumatology. Management of Rheumatoid arthritis: consensus recommendations from the Hong Kong Society of Rheumatology. Clin Rheumatol 2011;30:303-12. Crossref

Excess mortality for operated geriatric hip fracture in Hong Kong

Hong Kong Med J 2016 Feb;22(1):6–10 | Epub 9 Oct 2015
DOI: 10.12809/hkmj154568
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Excess mortality for operated geriatric hip fracture in Hong Kong
LP Man, MB, BS, MRCSEd; Angela WH Ho, MB, ChB, FHKAM (Orthopaedic Surgery); SH Wong, MB, BS, FHKAM (Orthopaedic Surgery)
Department of Orthopaedics and Traumatology, Caritas Medical Centre, Shamshuipo, Hong Kong
Corresponding author: Dr LP Man (mlp257@ha.org.hk)
 
 Full paper in PDF
Abstract
Introduction: Geriatric hip fracture places an increasing burden to health care systems around the world. We studied the latest epidemiology trend of geriatric hip fracture in Hong Kong, as well as the excess mortality for patients who had undergone surgery for hip fracture.
 
Methods: This descriptive epidemiology study was conducted in the public hospitals in Hong Kong. All patients who underwent surgery for geriatric hip fracture in public hospitals from January 2000 to December 2011 were studied. They were retrieved from the Clinical Management System of the Hospital Authority of Hong Kong. Relevant data were collected using the Clinical Data Analysis and Reporting System of the Hospital Authority. The actual and projected population size, and the age- and sex-specific mortality rates were obtained from the Census and Statistics Department of Hong Kong. The 30-day, 1-year and 5-year mortality, and excess mortality following surgery for geriatric hip fracture were calculated.
 
Results: There was a steady increase in the incidence of geriatric hip fracture in Hong Kong. The annual risk of geriatric hip fracture was decreasing in both sexes. Female patients aged 65 to 69 years had the lowest 1-year and 5-year mortality of 6.91% and 23.80%, respectively. Advancing age and male sex were associated with an increase in mortality and a higher excess mortality rate following surgery.
 
Conclusion: The incidence of geriatric hip fracture is expected to increase in the future. The exact reason for a higher excess mortality rate in male patients remains unclear and should be the direction for future studies.
 
New knowledge added by this study
  • Advancing age and male sex were associated with an increase in mortality and a higher excess mortality rate in Hong Kong following surgery for hip fracture.
Implications for clinical practice or policy
  • The burden of geriatric hip fracture is expected to increase.
  • Future studies should investigate the cause of an increased excess mortality in male patients who sustain a geriatric hip fracture.
 
 
Introduction
Geriatric hip fracture places an increasing burden on health care service providers around the world. Previous studies have shown that it is associated with significant morbidity and mortality.1 2 3 With the ageing population in many parts of Asia, it has been estimated that over half of all hip fractures will occur in Asia in 2050.4 Studies in France5 and the US6 have reported a drop in the incidence rate of geriatric hip fracture in the elderly population. This trend, however, has not been echoed by similar studies in Korea7 and Japan.8 Epidemiological studies performed in Hong Kong in 2007 and 2012 showed that, similar to western countries, there was a drop in the incidence rate of hip fracture in the territory.9 10
 
Hong Kong has one of the longest life expectancies in the world.11 The total number of geriatric hip fractures is expected to increase. It will therefore be important for policy-makers and society as a whole to adequately forecast future trends in the disease to prepare for the challenges ahead. This study aimed to analyse the latest trend in the epidemiology of geriatric hip fracture in Hong Kong, as well as to investigate the mortality rate and excess mortality rate in patients who underwent surgery for geriatric hip fracture.
 
Methods
Approximately 98% of geriatric hip fractures are managed in public hospitals run by the Hospital Authority of Hong Kong.10 All patients admitted to a public hospital in Hong Kong are assigned a code in the Clinical Management System by the attending doctor(s). The system also includes information on age, sex, principal diagnosis, and period of hospitalisation. Relevant data, including date of death, were collected using the Clinical Data Analysis and Reporting System (CDARS) from the Hospital Authority. All cases between January 2000 and December 2011 with a disease coding of acute hip fracture (ICD-9-CM diagnosis codes 820.8, 820.09, 820.02, 820.03, 820.20, and 820.22) were retrieved. Operations for geriatric hip fracture were defined as a patient-episode with ICD-9-CM procedure code of 81.52, 51.51, 81.40, 79.15, 79.35, or 78.55.
 
Only patients with a disease code for acute hip fracture and procedure code for geriatric hip fracture were included in the current study. Patients who were non-Chinese, who had an old fracture, were managed non-operatively, had a second hip fracture or complications of primary hip fracture were excluded. Based on the date of death, we analysed the 30-day and 1-year mortality regardless of cause of death. Postoperative 5-year mortality rate was calculated based on data from patients who underwent surgery from year 2000 to 2006.
 
Excess mortality is defined by the World Health Organization as “Mortality above what would be expected based on the non-crisis mortality rate in the population of interest.”12 In this study, the excess mortality rate was calculated by subtracting the age- and sex-specific mortality from the age- and sex-specified 1-year mortality of operated geriatric hip fracture. The age- and sex-specific mortality rates for the year 2006 were used for analysis. The actual and projected population size, and the age- and sex-specific mortality rates13 were obtained from the Census and Statistics Department of the HKSAR Government.
 
Results
From January 2000 to December 2011, the annual number of patients admitted to public hospitals and who underwent surgery for hip fracture increased from 3678 to 4579. The annual incidence of geriatric hip fracture during the study period is shown in Figure 1. A slightly decreasing annual risk of hip fracture was observed for both male and female patients (Figs 2 and 3).
 

Figure 1. Incidence of geriatric hip fracture from 2000 to 2011
 

Figure 2. Annual risk of hip fracture in men
 

Figure 3. Annual risk of hip fracture in women
 
A total of 48 992 cases were retrieved after excluding non-Chinese patients, old fractures, cases managed non-operatively, second hip fractures, repeated admission for the same fracture, and complications of primary hip fracture.
 
Patient age ranged from 65 to 112 years with a mean and median age of 82.1 and 82.0 years, respectively. The overall 30-day and 1-year mortality was 3.01% and 18.56%, respectively.
 
The age- and sex-specific mortality after 30 days, 1 year, and 5 years for operated hip fracture are shown in Table 1. Female patients aged 65 to 69 years had the lowest 1-year and 5-year mortality of 6.91% and 23.80%, respectively. An increase in mortality was observed with advancing age and male sex.
 

Table 1. Postoperative mortality rates for geriatric hip fracture
 
The excess mortality rate in different age and sex groups is shown in Table 2 and Figure 4. Male gender and increasing age were associated with a higher excess mortality rate after operation for geriatric hip fracture. The excess mortality for a male patient aged ≥85 years was 23.45%.
 

Table 2. Age- and sex-specific excess mortality of geriatric hip fracture
 
 

Figure 4. Age- and sex-specific excess mortality of geriatric hip fracture
 
Discussion
A slight decrease in the annual risk of geriatric hip fracture was noted in this study. This trend echoes that of similar studies in the territory and in some western countries.5 6 10 Such a decrease has been postulated to be related to improved availability of medical intervention to prevent osteoporosis, increased attention to menopause and hormonal replacement therapy, changes in lifestyle, and community fall prevention programmes. Nonetheless few studies have been able to prove any causal relationship.
 
Surgery is generally offered to patients with geriatric hip fracture in order to decrease the morbidity and mortality associated with prolonged immobilisation. In this study, patients who were managed non-operatively were excluded as they represented a very small proportion of patients (estimated to be <1%) with poor pre-morbid medical conditions and very high anaesthetic risk.
 
Despite the decreasing annual risk of geriatric hip fracture, it is important to relate this to the ageing population in the territory. Using the projected percentage of elderly aged ≥65 years in Hong Kong,11 and assuming that the annual risk of hip fracture remains the same, we estimate that there will be more than 6300 cases of hip fracture in the year 2020. In the year 2040, the annual incidence of geriatric hip fracture will be more than 14 500, more than a 3-fold increase from 2011. Unless effective primary prevention measures are put in place, the burden of geriatric hip fracture on the public health system will continue to increase. Policy-makers should invest in the relevant specialties and departments in order to tackle the inevitable challenges ahead.
 
To our knowledge this is the first study to review the excess mortality of operated geriatric hip fracture in the territory. A systematic epidemiological review by Abrahamsen et al14 showed that the 1-year excess mortality rate following hip fracture ranged from 8.4% to 36%. In this study, the 1-year excess mortality following surgery for geriatric hip fracture ranged from 6.22% to 23.45%. Echoing the result of Abrahamsen et al,14 we also identified that men had a higher excess mortality rate after operation for geriatric hip fracture. The reasons for this higher excess mortality rate in males remain unclear. Endo et al15 reported that male gender was a risk factor for sustaining postoperative complications such as pneumonia, arrhythmia, delirium, and pulmonary embolism, even after controlling for age and the American Society of Anesthesiologists rating, as well as a higher mortality 1 year after hip fracture. Another study by Wehren et al16 reported an increased rate of death from infection in males for at least 2 years after hip fracture, suggesting that infection may contribute to the differential risk of death.
 
There are limitations to the present study. Patients with geriatric hip fracture who were treated in the private sector were not included, although they constituted only a small proportion of the total number of cases. Chau et al10 reported that approximately 98% of hip fractures were managed in the Hospital Authority.
 
In the CDARS of the Hospital Authority, the date of death was provided by the death registry of the Immigration Department of Hong Kong. We were unable to capture data for deaths that occurred outside the territory. Under the laws of Hong Kong, only deaths that occur in Hong Kong are registered with the Deaths Registries. According to the Census and Statistics Department, approximately 9% of the elderly population resides in the mainland.17 As Hong Kong residents are currently not eligible for free or subsidised health services in the mainland, we believe many elderly people will return to Hong Kong for medical treatment.
 
Other risk factors that may contribute to the excess mortality such as smoking and pre-morbid health status were not included in the present study. Further studies should also investigate the incidence and mortality of other fragility fractures. The effect of primary and secondary prevention by anti-osteoporotic medications on the incidence of geriatric hip fracture is also a potential area for further study.
 
Conclusion
Geriatric hip fracture will continue to be a major challenge for the health care system in the foreseeable future. Despite the emphasis on early surgery for geriatric hip fractures in recent years, the risk of premature death remained high for patients who underwent surgery for hip fracture. Future studies should be directed to identify the causes of this excess mortality and patients who are at increased risk of premature death, so that early interventions can be initiated to reduce their risk.
 
Acknowledgements
The authors would like to thank Mr Tony Kwok and the CDARS team of Hospital Authority for their help in data retrieval.
 
References
1. Mullen JO, Mullen NL. Hip fracture mortality. A prospective, multifactorial study to predict and minimize death risk. Clin Orthop Relat Res 1992;(280):214-22.
2. Omsland TK, Emaus N, Tell GS, et al. Mortality following the first hip fracture in Norwegian women and men (1999-2008). A NOREPOS study. Bone 2014;63:81-6. Crossref
3. Randell AG, Nguyen TV, Bhalerao N, Silverman SL, Sambrook PN, Eisman JA. Deterioration in quality of life following hip fracture: a prospective study. Osteoporos Int 2000;11:460-6. Crossref
4. Cooper C, Campion G, Melton LJ 3rd. Hip fractures in the elderly: a world-wide projection. Osteoporos Int 1992;2:285-9. Crossref
5. Maravic M, Taupin P, Landais P, Roux C. Change in hip fracture incidence over the last 6 years in France. Osteoporos Int 2011;22:797-801. Crossref
6. Brauer CA, Coca-Perraillon M, Cutler DM, Rosen AB. Incidence and mortality of hip fractures in the United States. JAMA 2009;302:1573-9. Crossref
7. Yoon HK, Park C, Jang S, Jang S, Lee YK, Ha YC. Incidence and mortality following hip fracture in Korea. J Korean Med Sci 2011;26:1087-92. Crossref
8. Hagino H, Yamamoto K, Ohshiro H, Nakamura T, Kishimoto H, Nose T. Changing incidence of hip, distal radius, and proximal humerus fractures in Tottori Prefecture, Japan. Bone 1999;24:265-70. Crossref
9. Kung AW, Yates S, Wong V. Changing epidemiology of osteoporotic hip fracture rates in Hong Kong. Arch Osteoporos 2007;2:53-8. Crossref
10. Chau PH, Wong M, Lee A, Ling M, Woo J. Trends in hip fracture incidence and mortality in Chinese population from Hong Kong 2001-09. Age Ageing 2013;42:229-33. Crossref
11. Hong Kong Population Projections 2012-2041, Census and Statistics Department. Available from: http://www.censtatd.gov.hk/. Accessed Jun 2015.
12. Definitions: emergencies. Available from: http://www.who.int/hac/about/definitions/en/. Accessed Jun 2015.
13. The mortality trend in Hong Kong, 1981 to 2013. Hong Kong Monthly Digest of Statistics. November 2014, HKSAR: Census and Statistics Department. Available from: http://www.statistics.gov.hk/pub/B71411FB2014XXXXB0100.pdf. Accessed Jun 2015.
14. Abrahamsen B, va Staa T, Ariely R, Olson M, Cooper C. Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int 2009;20:1633-50. Crossref
15. Endo Y, Aharonoff GB, Zuckerman JD, Egol KA, Koval KJ. Gender differences in patients with hip fracture: a greater risk of morbidity and mortality in men. J Orthop Trauma 2005;19:29-35. Crossref
16. Wehren LE, Hawkes WG, Orwig DL, Hebel JR, Zimmerman SI, Magaziner J. Gender differences in mortality after hip fracture: the role of infection. J Bone Miner Res 2003;18:2231-7. Crossref
17. Characteristics of Hong Kong older persons residing in the Mainland of China. Hong Kong Monthly Digest of Statistics. September 2011. HKSAR: Census and Statistics Department. Available from: http://www.statistics.gov.hk/pub/B71109FC2011XXXXB0100.pdf. Accessed Jul 2015.

Bone health status of postmenopausal Chinese women

Hong Kong Med J 2015 Dec;21(6):536–41 | Epub 16 Oct 2015
DOI: 10.12809/hkmj154527
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Bone health status of postmenopausal Chinese women
Sue ST Lo, MD, FRCOG
The Family Planning Association of Hong Kong, 10/F, Southorn Centre, 130 Hennessy Road, Wanchai, Hong Kong
Corresponding author: Dr Sue ST Lo (stlo@famplan.org.hk)
 
 Full paper in PDF
Abstract
Objectives: To evaluate the prevalence of osteoporosis in treatment-naïve postmenopausal women, their treatment adherence, and the risk factors for osteoporosis.
 
Design: Cross-sectional study of bone density reports, a self-administered health checklist, and computerised consultation records.
 
Setting: Primary care sexual and reproductive health service in Hong Kong.
 
Participants: Postmenopausal Chinese women who had never received osteoporosis treatment or hormone replacement therapy.
 
Intervention: Each woman completed a checklist of risk factors for osteoporosis, menopause age, history of hormone replacement therapy, and osteoporosis treatment prior to undergoing bone mineral density measurement at the postero-anterior lumbar spine and left femur. The consultation records of those with osteoporosis were reviewed to determine their treatment adherence.
 
Main outcome measures: T-score at the spine and hip, presence or absence of risk factors for osteoporosis, and treatment adherence.
 
Results: Between January 2008 and December 2011, 1507 densitometries were performed for eligible women; 51.6% of whom were diagnosed with osteopenia and 25.7% with osteoporosis. The mean age of women with normal bone mineral density, osteopenia, and osteoporosis was 57.0, 58.0, and 59.7 years, respectively. Approximately half of them had an inadequate dietary calcium intake, performed insufficient weight-bearing exercise, or had too little sun exposure. Logistic regression analysis revealed that age, body mass index of <18.5 kg/m2, parental history of osteoporosis or hip fracture, and duration of menopause were significant risk factors for osteoporosis. Among those with osteoporosis, 42.9% refused treatment, 30.7% complied with treatment, and 26.3% discontinued treatment or defaulted from follow-up. Those who refused treatment were significantly older.
 
Conclusions: Osteoporosis is prevalent in postmenopausal women. Only 50% adopted primary prevention strategies. Almost 70% refused treatment or stopped prematurely.
 
New knowledge added by this study
  • Osteoporosis affects one in four postmenopausal Chinese women in Hong Kong.
  • Age, body mass index of <18.5 kg/m2, a positive parental history of osteoporosis or hip fracture, and duration of menopause are significant risk factors for osteoporosis.
  • Only 31% of osteoporotic women complied with the treatment protocol.
Implications for clinical practice or policy
  • This study showed that osteoporosis is prevalent in Hong Kong Chinese postmenopausal women. Doctors should encourage postmenopausal women to have an adequate calcium intake, perform sufficient weight-bearing exercise, and have enough sun exposure. Those with risk factors should also undergo dual-energy X-ray absorptiometry to ascertain their bone status.
  • Drug compliance is a problem in those with osteoporosis. Patient education should be provided to help them understand the importance of treatment compliance, the risk of fracture, and osteoporosis-associated morbidity and mortality.
 
 
Introduction
Osteoporosis is a major health problem in the elderly causing significant morbidity, mortality, and socio-economic burden. Women are more vulnerable to osteoporosis than men because they have smaller and thinner bones. In addition, the sudden drop in ovarian oestrogen production around menopause causes women to lose bone rapidly. Accelerated bone loss begins about 2 to 3 years before the last menses and continues until 3 to 4 years after menopause. There is 2% bone loss annually around menopause, slowing to 1% to 1.5% annually thereafter.1 2 Bone mineral density (BMD) measurement by central dual-energy X-ray absorptiometry (DXA) is the gold standard for diagnosing osteoporosis. Bone mineral density is compared with the mean peak BMD for young adults of the same sex and ethnicity to calculate a T-score. The World Health Organization (WHO) defines osteoporosis as a BMD 2.5 standard deviations (SDs) below that of young-adult BMD and osteopenia as a BMD 1.0 to 2.5 SD below.3 A meta-analysis of prospective and case-control studies of BMD and fracture risk showed that the predictive value of BMD for fracture is at least as good as that of blood pressure for stroke.4 In a recent prospective study of postmenopausal Chinese women, the relative risk of fracture increased 2-fold (95% confidence interval [CI], 1.6-2.5) for each decrease in SD of mean femoral-neck BMD.5
 
With urbanisation and adoption of a more sedentary lifestyle, the age-specific incidence of hip fracture in Hong Kong women increased by 300% between 1966 and 1985.6 The incidence levelled off between 1985 and 1995.7 Between 1995 and 2004, the incidence declined by 50% in those aged 50 to 59 years but remained stable for other age-groups.8 Although the age-specific incidence rates stabilise, the absolute number of hip fractures will continue to increase because of the ageing population. It has been estimated that in Hong Kong, 5293 women will have a hip fracture in the year 2015.9 The local prevalence of vertebral fracture in women has been estimated to be 30%.10 Osteoporotic fractures increase the morbidity and mortality of individuals and are a considerable burden on the health-care system. After the first fracture, the risk of subsequent fracture of an individual is 2.2 times higher than that of an individual without a prior fragility fracture (95% CI, 1.9-2.6).11 Primary care physicians play a pivotal role in preventing this fracture cascade in postmenopausal women. They can help postmenopausal women improve bone health by encouraging them to adopt primary prevention strategies for osteoporosis and fall that may cause fracture; increasing their awareness of their personal risk for osteoporosis and taking action to minimise those risks; providing DXA assessment when indicated; and treating women who are diagnosed with osteoporosis.12 Pharmacological treatment can reduce the risk of osteoporotic fractures by 30% to 70%. Treatment failure is partly due to poor drug compliance with treatment. In a systematic review of osteoporosis treatment with bisphosphonates, the yearly drug compliance rate was only 42.5% to 54.8%.13
 
The objectives of this study were to evaluate the prevalence of osteoporosis in treatment-naïve postmenopausal Chinese women, and determine the risk factors associated with osteoporosis and treatment compliance in those diagnosed with osteoporosis. These results will help physicians understand the bone health status of postmenopausal Chinese women.
 
Methods
Postmenopausal women who attend the Women’s Health Service in Hong Kong for menopause assessment are offered DXA testing of the spine and hip. Since a charge is made for the test, it is not universally accepted. The number of women who refused DXA was not captured. Prior to undergoing DXA, women completed a checklist of risk factors that included a history of parental osteoporosis or hip fracture, personal low trauma fracture, smoking habit, drinking habit, calcium intake, exercise habit, sun exposure, use of medication or presence of disease that causes bone loss, number of falls in the past 12 months, previous use of hormone replacement therapy, previous use of osteoporosis drugs, and current osteoporosis treatment. The BMD at the postero-anterior lumbar spine (L1-L4) and left femur (total hip, trochanter, Ward’s triangle, and femoral neck) was measured using a Hologic QDR4000 machine (Hologic Inc, Bedford [MA], US) and performed by a single operator. The DXA report provided data on age, menopause age, body mass index (BMI), BMD, T-score, and Z-score. The checklist and DXA report were filed together by date.
 
This analysis was conducted by searching through paper records completed between January 2008 and December 2011. The research protocol was approved by the Ethics Panel of the Family Planning Association of Hong Kong. Non-Chinese women and those previously or currently prescribed hormone replacement therapy or osteoporosis treatment were excluded. The computerised consultation records of those with osteoporosis were searched to obtain treatment history. Our clinic only provides oral osteoporotic drugs (raloxifene, weekly alendronate, monthly ibandronate and strontium ranelate). The treatment plan, risks, and benefits of each drug, specific prescription required of each drug, and contra-indications are discussed with the patient before deciding the drug therapy. Patients are involved in decision making and must pay for treatment.
 
Descriptive statistics for basic demographic factors, risk factors for osteoporosis, T-score distribution, and treatment adherence were presented. Women were categorised into three subgroups according to their T-score and based on WHO recommendations3: normal BMD (T-score ≥-1.0 at either the hip or spine), osteopenia (T-score between <-1.0 and -2.5), and osteoporosis (T-score <-2.5). The Chi squared test was used to test for a significant association between categorical risk factors and osteoporosis. Stepwise binomial logistic regression analysis using factors found to have a significant correlation with BMD of T-score of <-2.5 was performed to identify risk factors that best predict osteoporosis. Analysis of variance was used to analyse the difference between group means. Level of significance was set at alpha = 0.05 for the two-tailed tests. Data analyses were performed using the Statistical Package for the Social Sciences (version 23.0; IBM, New York, US).
 
Results
Between January 2008 and December 2011, 1507 DXA scans were performed for eligible women. Their mean (± SD) age was 58.2 ± 6.4 years and the mean age at menopause was 49.9 ± 4.0 years. The median duration of menopause (years from menopause to date of DXA) was 7 years (interquartile range, 3-11 years). The number of women with risk factors for osteoporosis in the whole group and subgroups are listed in Table 1. Only 1% of participants were unable to recall whether or not there was a parental history of osteoporosis or hip fracture.
 
Osteoporosis was diagnosed in 25.7% of women and osteopenia in 51.6%. The mean age of women with normal BMD, osteopenia, and osteoporosis was 57.0 ± 5.6 years, 58.0 ± 6.4 years, and 59.7 ± 6.8 years, respectively (P<0.001). The mean age at menopause for each subgroup was the same: 50.0 years (P=0.441). Apart from age, BMI of <18.5 kg/m2 (P<0.001), duration of menopause (P<0.001), parental history of osteoporosis or hip fracture (P=0.024), and not doing 20 minutes of weight-bearing exercise daily (P=0.033) were significant risk factors for osteoporosis. Although smoking is a significant risk factor for low bone mass, there were too few smokers in this group to make any meaningful comparison. The other risk factors did not show a significant association with osteoporosis (Table 1). The proportion of women who had risk factors and who had spine osteoporosis and hip osteoporosis is listed in Table 2. The results of the stepwise logistic regression analysis are shown in Table 3—only older age, low BMI, longer duration of menopause, and parental history remained significant.
 

Table 1. Comparison of risk factors for osteoporosis among postmenopausal women with normal BMD, osteopenia, and osteoporosis (% within group)
 

Table 2. Comparison of risk factors in different sites of osteoporosis (% within group)
 

Table 3. Stepwise logistic regression analysis evaluating risk factors for osteoporosis
 
Among the 387 women with osteoporosis, 166 (42.9%) refused treatment because they feared of the side-effects of drugs, 119 (30.7%) complied with the treatment provided, 45 (11.6%) discontinued treatment due to side-effects or worry about side-effects, and 57 (14.7%) has defaulted from follow-up by March 2015. The common side-effects that concerned patients included hot flushes with raloxifene, gastric and musculoskeletal pain with bisphosphonates, and loose stools and diarrhoea with strontium ranelate. For major adverse events, patients were concerned about atypical fracture and osteonecrosis of the jaw with bisphosphonates and increased cardiac risk with strontium ranelate. Among the 119 women who complied with treatment, 20 were still on treatment in March 2015 and 99 were taking a drug holiday after 2 to 6 years’ treatment that brought BMD to the osteopenic range. Those who refused treatment were significantly older with a mean age of 61.2 ± 7.8 years (P<0.001).
 
Discussion
Osteoporosis is estimated to affect 200 million women worldwide, which is approximately one tenth of women aged 60 years, one fifth of those aged 70 years, two fifths of those aged 80 years, and two thirds of women aged 90 years.14 It has been estimated that approximately 30% of postmenopausal American women15 and 23% of postmenopausal Australian women have osteoporosis.16 The prevalence of osteoporosis in postmenopausal Indonesian women has been reported to be 20.2% in the lumbar vertebrae.17 In Germany, 23.3% of postmenopausal German women aged 50 to 64 years had osteoporosis.18 The prevalence of osteoporosis (25.7%) in this study was similar to the prevalence rate of 24.9% reported by another local epidemiological study.19 Because of the silent nature of osteoporosis, most patients who do not undergo DXA are unaware of the diagnosis. Realisation usually comes when a fragility fracture occurs.
 
Screening DXA is recommended for women aged 65 years and over as well as for at-risk younger women.20 21 In our subjects, age, low BMI, positive parental history of osteoporosis or hip fracture, and duration of menopause were significant risk factors. The Osteoporosis Self-assessment Tool for Asians is a simple validated tool that can determine the need for DXA, based on age and body weight.22 Osteoporosis has been shown by many studies to have a strong genetic influence.23 24 25 A parental history of fracture, particularly of the hip, confers an increased risk of fracture that is independent of BMD.26 Most of our patients could remember their menopause age and provide a parental history of osteoporosis or hip fracture for assessment.
 
Apart from delineating the magnitude of osteoporosis among postmenopausal women, this study also showed that almost half of them did not have an adequate calcium intake, and did not perform sufficient weight-bearing exercise or have enough sun exposure. The National Osteoporosis Foundation (NOF) recommends 1200 mg calcium and 800 to 1000 IU vitamin D daily for women aged 50 and beyond.21 Nearly all Asian countries fall far below this recommendation. The median dietary calcium intake for the adult Asian population is approximately 450 mg/day.9 The recent calcium calculator launched by the International Osteoporosis Foundation (IOF) is a useful tool to help women assess their daily calcium intake (http://www.iofbonehealth.org/calcium-calculator). Studies carried out across different countries in South and South-East Asia have shown, with few exceptions, widespread prevalence of vitamin D deficiency and insufficiency in both sexes and all age-groups of the population.27 The IOF therefore recommends 800 IU/day vitamin D for everyone, even for those with regular effective sun exposure.28 The NOF also recommends regular weight-bearing and muscle-strengthening exercise to improve agility, strength, posture, and balance. This may reduce the risk of falls and fractures.9 There is clear evidence that tai chi is effective for fall prevention and improving psychological health and is associated with general health benefits for older people.29 Meta-analysis of the effect of tai chi on osteoporosis or BMD is, however, inconclusive as a result of many different tai chi exercises being studied, and variable design and different quality-rating instruments used in the systematic reviews of tai chi literature.30 We were unable to show a significant association of diet, exercise, and sun exposure with osteoporosis in this cohort, probably due to limitations in capturing accurate information as discussed below. The important message to emphasise is that, in this group of self-selected clinic attendees who are in general believed to be more health conscious, the proportion of women adopting such healthy lifestyle strategies was not high. The situation in the general population might be worse. Since these are important lifestyle strategies for osteoporosis prevention, clinicians should encourage all postmenopausal women to adopt them.
 
It is of concern that in this study almost 43% of women with osteoporosis refused treatment. Among those who agreed to start treatment, only half adhered to treatment. Some women decided to stop treatment prematurely because they were distressed by reports of major adverse events such as atypical fracture and osteonecrosis of the jaw. Some women read news articles that stated treatment should not exceed 2, 3, or 5 years, then refused to continue treatment beyond this time frame. Although bisphosphonates are long-acting drugs, extended dosing does not compensate for poor drug compliance. A recent study showed that 64.0% of patients discontinued weekly alendronate, 66.4% discontinued weekly risedronate, and 68.2% discontinued monthly ibandronate.31 Hence dosing regimens are unlikely to be solely responsible for poor compliance. Other factors that reduced drug compliance included: cost of medication, low motivation to take drug as patients were asymptomatic, patients did not believe they were at significant risk of fracture, some patients had difficulty complying with the prescribed regimen for bisphosphonates and strontium ranelate in the context of their daily routine, the patient was already on a number of medications for other illnesses and refused more. Further research is needed to understand patient decision-making models for osteoporosis treatment and how health education from various sources (health-care providers, family, friends, and media) can modify their attitude towards osteoporosis treatment.
 
The main limitations of this study are, first, selection bias because some women refused to have DXA. The study women were therefore self-selected, hence the prevalence reported might not be representative of the population. Second, the information in the checklist was provided by patient recall and their responses were not verified. Similarly, the menopause age was provided by the patient and could not be verified. Third, the monitoring period was insufficient to provide fracture data that would allow comparison of outcome in patients who adhered to treatment and those who did not. Fourth, drug compliance (whether the drug was taken correctly), drug omission, stockpiling or transfer of medicines between friends and relatives were not assessed in detail.
 
Conclusions
Osteoporosis is prevalent in the local population, affecting one in four postmenopausal women. Those with risk factors such as low BMI, older age, longer duration since menopause, and parental history of osteoporosis or hip fracture, should undergo DXA. In addition to prompt diagnosis and treatment of osteoporosis, physicians should monitor patient drug compliance at each follow-up. At the same time, calcium intake, sun exposure, and exercise pattern should also be evaluated to help optimise their bone health.
 
References
1. Recker RR, Lappe J, Davies K, Heaney R. Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res 2000;15:1965-73. Crossref
2. Pouillès JM, Trémollières F, Ribot C. Vertebral bone loss in perimenopause. Results of a 7-year longitudinal study [in French]. Presse Med 1996;25:277-80.
3. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO Technical Report Series 843. Geneva: World Health Organization; 1994.
4. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996;312:1254-9. Crossref
5. Kung AW, Lee KK, Ho AY, Tang G, Luk KD. Ten-year risk of osteoporotic fractures in postmenopausal Chinese women according to clinical risk factors and BMD T-scores: a prospective study. J Bone Miner Res 2007;22:1080-7. Crossref
6. Lau EM, Cooper C. The epidemiology of osteoporosis. The oriental perspective in a world context. Clin Orthop Relat Res 1996;323:65-74. Crossref
7. Lau EM, Cooper C, Fung H, Lam D, Tsang KK. Hip fracture in Hong Kong over the last decade—a comparison with the UK. J Public Health Med 1999;21:249-50. Crossref
8. Kung AW, Yates S, Wong V. Changing epidemiology of osteoporotic hip fracture rates in Hong Kong. Arch Osteoporos 2007;2:53-8. Crossref
9. The Asian Audit. Epidemiology, costs and burden of osteoporosis in Asia 2009. International Osteoporosis Foundation; 2009. Available from: http://www.iofbonehealth.org/sites/default/files/PDFs/Audit%20Asia/Asian_regional_audit_2009.pdf. Accessed 26 Jan 2015.
10. Lau EM, Chan HH, Woo J, et al. Normal ranges for vertebral height ratios and prevalence of vertebral fracture in Hong Kong Chinese: a comparison with American Caucasians. J Bone Miner Res 1996;11:1364-8. Crossref
11. Center JR, Bliuc D, Nguyen TV, Eisman JA. Risk of subsequent fracture after low-trauma fracture in men and women. JAMA 2007;297:387-94. Crossref
12. International Osteoporosis Foundation. The Breaking Spine. 2010. Available from: http://share.iofbonehealth.org/WOD/2010/thematic_report/2010_the_breaking_spine_en.pdf. Accessed 22 May 2015.
13. Cramer JA, Gold DT, Silverman SL, Lewiecki EM. A systematic review of persistence and compliance with bisphosphonates for osteoporosis. Osteoporos Int 2007;18:1023-31. Crossref
14. Kanis JA. Assessment of osteoporosis at the primary health care level. Report of a WHO Scientific Group. Technical Report. World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK; 2007. Available from: http://www.iofbonehealth.org/sites/default/files/WHO_Technical_Report-2007.pdf. Accessed 22 May 2015.
15. Melton LJ 3rd, Chrischilles EA, Cooper C, Lane AW, Riggs BL. Perspective: How many women have osteoporosis? J Bone Miner Res 1992;7:1005-10. Crossref
16. Estimating the prevalence of osteoporosis in Australia. Cat. no. PHE 178. Canberra: Australian Institute of Health and Welfare (AIHW); 2014. Available from: http://www.aihw.gov.au/WorkArea/DownloadAsset.aspx?id=60129548481. Accessed 22 May 2015.
17. Meiyanti. Epidemiology of osteoporosis in postmenopausal women aged 47 to 60 years. Univ Med 2010;29:169-76. Available from: http://www.univmed.org/wp-content/uploads/2011/02/Meiyanti.pdf. Accessed 22 May 2015.
18. Häussler B, Gothe H, Göl D, Glaeske G, Pientka L, Felsenberg D. Epidemiology, treatment and costs of osteoporosis in Germany—the BoneEVA Study. Osteoporos Int 2006;18:77-84. Crossref
19. Lau EM, Chung HL, Ha PC, Tam H, Lam D. Bone mineral density, anthropometric indices, and the prevalence of osteoporosis in Northern (Beijing) Chinese and Southern (Hong Kong) Chinese women—the largest comparative study to date. J Clin Densitom 2015 Jan 13. Epub ahead of print. Crossref
20. 2013 Official Positions of the International Society for Clinical Densitometry. Available from: http://www.iscd.org/documents/2014/02/2013-iscd-official-position-brochure.pdf. Accessed 26 Jan 2015.
21. National Osteoporosis Foundation. The clinician’s guide to prevention and treatment of osteoporosis 2014. Available from: http://nof.org/files/nof/public/content/file/2791/upload/919.pdf. Accessed 26 Jan 2015.
22. Koh LK, Sedrine WB, Torralba TP, et al. A simple tool to identify Asian women at increased risk of osteoporosis. Osteoporos Int 2001;12:699-705. Crossref
23. Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S. Genetic determinants of bone mass in adults. A twin study. J Clin Invest 1987;80:706-10. Crossref
24. Seeman E, Hopper JL, Bach LA, et al. Reduced bone mass in daughters of women with osteoporosis. N Engl J Med 1989;320:554-8. Crossref
25. Thijssen JH. Gene polymorphisms involved in the regulation of bone quality. Gynecol Endocrinol 2006;22:131-9. Crossref
26. Kanis JA, Johansson H, Oden A, et al. A family history of fracture and fracture risk: a meta-analysis. Bone 2004;35:1029-37. Crossref
27. Mithal A, Wahl DA, Bonjour JP, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 2009;20:1807-20. Crossref
28. Dawson-Hughes B, Mithal A, Bonjour JP, et al. IOF position statement: vitamin D recommendations for older adults. Osteoporos Int 2010;21:1151-4. Crossref
29. Lee MS, Ernst E. Systematic reviews of t’ai chi: an overview. Br J Sports Med 2012;10:713-8. Crossref
30. Alperson SY, Berger VW. Opposing systematic reviews: the effects of two quality rating instruments on evidence regarding t’ai chi and bone mineral density in postmenopausal women. J Altern Complement Med 2011;17:389-95. Crossref
31. Fan T, Zhang Q, Sen SS. Persistence with weekly and monthly bisphosphonates among postmenopausal women: analysis of a US pharmacy claims administrative database. Clinicoecon Outcomes Res 2013;5:589-95. Crossref

Pages