Secular trends in caesarean section rates over 20 years in a regional obstetric unit in Hong Kong

Hong Kong Med J 2017 Aug;23(4):340–8 | Epub 7 Jul 2017
DOI: 10.12809/hkmj176217
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Secular trends in caesarean section rates over 20 years in a regional obstetric unit in Hong Kong
WH Chung, MRCOG, FHKAM (Obstetrics and Gynaecology); CW Kong, FHKAM (Obstetrics and Gynaecology); William WK To, FRCOG, FHKAM (Obstetrics and Gynaecology)
Department of Obstetrics and Gynaecology, United Christian Hospital, Kwun Tong, Hong Kong
 
Corresponding author: Dr WH Chung (vivianchung1228@hotmail.com)
 
 Full paper in PDF
 
Abstract
Introduction: Although caesarean section rates have been increasing over the years in both public and private sectors in Hong Kong, there has been a paucity of formal surveys on local trends in such rates. This study aimed to examine the trends in caesarean section rates over a 20-year period at a public regional obstetric unit in Hong Kong using the Robson’s Ten-group Classification System.
 
Methods: All deliveries in a single obstetric unit during a 20-year period (1995-2014) were classified into 10 subgroups according to the Robson’s classification. The annual caesarean section rate for each subgroup was calculated and then stratified into 5-year intervals to analyse any significant trends.
 
Results: The caesarean section rates in a total of 86 262 births with complete data were analysed. The overall caesarean section rate increased modestly from 15.4% to 24.6% during the study period. There was an obvious increasing trend for caesarean section in those with previous caesarean section (Robson’s category 5), breech presentation at delivery (category 6 and 7), multiple pregnancy (category 8), and preterm labour (category 10). A gradual fall in caesarean section rate from 14.4% to 10.8% was seen in primiparous women with term spontaneous labour (category 1). Statistically significant differences (P<0.001) in these trends were confirmed when the data were stratified into 5-year intervals for comparison.
 
Conclusion: The rising caesarean section rate may be associated with clinical management policies that allow women with relative risk factors (such as breech, previous caesarean section, or multiple pregnancy) to opt for caesarean section. This rise was counterbalanced by a decrease in primary caesarean section rate in primiparous women with spontaneous labour. The trend for caesarean section was more in line with patient expectations rather than evidence-based practice.
 
 
New knowledge added by this study
  • Pregnancy with previous caesarean section (CS) was the principal contributing factor to rising CS trend.
  • In addition, a significant increase in CS rate was observed in those with breech presentation, multiple pregnancy, and preterm labour.
Implications for clinical practice or policy
  • To reverse this rise, policies should aim to reduce CS rate for first births by adopting external cephalic version and safe vaginal delivery technique for twins. Vaginal delivery after previous CS can be promoted to reduce repeat CS.
  • The results of this study should encourage obstetric units to audit their own CS trends using the Robson’s classification, analyse the extent of rise for each class, identify areas for improvement, and institute appropriate changes in clinical practice.
 
 
Introduction
The crude rate of caesarean section (CS) deliveries is considered an important global indicator when measuring access to obstetric care.1 Previous ecological analysis in primitive lower-income countries revealed that with the introduction of safe CS deliveries, small increases in CS rates, if performed in women with a medical indication, could dramatically reduce maternal and newborn mortality.1 2 3 On the other hand, CS rates in developed countries have risen steeply since the 1970s and 1980s4 without any obvious evidence of significant improvements in pregnancy outcome.1 5 High CS rates have since been an issue of international public health concern. In 1985, the World Health Organization (WHO) stated that there was no justification for any region to have a CS rate higher than 10% to 15%.6 There is a lack of scientific evidence of any substantial maternal or perinatal benefit from increasing CS rates and some studies contrarily have shown that higher rates may be associated with negative consequences to maternal and child health.7 8 Despite this, CS rates have continued to increase worldwide in middle- and high-income countries. The WHO-recommended upper limit of 15% has been grossly exceeded by most centres in developed countries over the last two decades.9
 
The lack of a standardised classification system to facilitate monitoring and comparison of CS rates in a consistent and action-oriented manner is one of the factors that makes changes to CS trends difficult to understand.10 Previous discussions often focused on total CS rates and did not yield information about the underlying reasons. The Robson’s Ten-group Classification System is one of the best methods that fulfils current international and institutional needs to monitor and analyse CS rates.11 The classification system divides women into 10 groups based on basic epidemiological and obstetric characteristics, including parity, previous uterine scar, preterm (<37 weeks) or term delivery, fetal presentation, singleton or multiple pregnancy, or whether labour is spontaneous or induced. The actual indication for CS is not needed for such categorisation. As the groups are totally inclusive and mutually exclusive, the classification system can be applied prospectively. All women who present to the labour ward for delivery can be promptly classified based on these readily available parameters. Specifically, these categories are11:
(1) Primiparous women with a single cephalic pregnancy, ≥37 weeks’ gestation, in spontaneous labour;
(2) Primiparous women with a single cephalic pregnancy, ≥37 weeks’ gestation, who have induction of labour or CS prior to labour onset;
(3) Multiparous women without a previous uterine scar, with a single cephalic pregnancy of ≥37 weeks’ gestation in spontaneous labour;
(4) Multiparous women without a previous uterine scar, with a single cephalic pregnancy of ≥37 weeks’ gestation, with induction of labour or CS prior to labour onset;
(5) Multiparous women with one or more previous uterine scar(s) and a single cephalic pregnancy of ≥37 weeks’ gestation;
(6) Primiparous women with a single breech pregnancy;
(7) Multiparous women with a single breech pregnancy, with/without previous uterine scar(s);
(8) Women with multiple pregnancies with/without previous uterine scar(s);
(9) Women with a single pregnancy with a transverse or oblique lie, with/without previous uterine scar(s); and
(10) Women with a single cephalic pregnancy at ≤36 weeks’ gestation.
 
Despite this increase in CS rates over the years in both public as well as private sectors, there has been a paucity of formal surveys on trends in CS rates in Hong Kong. This study attempted to analyse the secular trends in CS rates over 20 years at a single public tertiary training obstetric unit serving a stable population of around 0.7 to 1 million in the Kowloon East area. Applying the Robson’s classification to the data should allow identification of the subgroup(s) that are predominantly contributing to the steady increase in overall CS rate. The results of this study should determine whether the increase in CS rates is genuinely due to changes in patient epidemiology and risk factors or merely to changes in obstetric management.
 
Methods
The obstetric data from a single obstetric unit (United Christian Hospital, Kwun Tong) for the last 20 years (1995-2014) were retrieved from the Hospital Authority (HA) Obstetrics Clinical Information System. The annual data were supplied to the unit in an anonymous format with only secondary identifiers such as medical record number and hospital number. After compiling this 20-year database, basic patient characteristics that could constitute important epidemiological risk factors, such as the proportion with advanced maternal age of >35 years, percentage with previous CS or other uterine scars, induction of labour and multiple pregnancies, were calculated over the study period.
 
All cases that underwent CS in our unit during the study period were classified into one of the 10 groups according to the Robson’s classification,10 11 using prior characteristics or risk factors before delivery, including primiparous versus multiparous, preterm versus term, induction of labour versus spontaneous labour, cephalic presentation versus breech or other non-cephalic presentation, singleton versus multiple pregnancy, and previous uterine scar versus no previous scars. The CS rate of each of the 10 subgroups was then calculated for each year, and the trends and changes in the rate over the 20 years were examined. The total number of patients in each category was then stratified into four 5-year intervals to compare the four periods using 4 x 2 contingency tables and Mantel-Haenszel Chi squared tests for linear trends for each category. A P value of <0.05 was considered statistically significant. Significant trends identified in each category were then compared with observable trends in patient epidemiological factors over the same period of time. This study was approved by the Kowloon Central/Kowloon East Ethics Committee Board.
 
Results
There were 86 262 births and 17 140 CSs from January 1995 to December 2014. The annual number of deliveries over the 20 years ranged from 3350 in 1995 to 5648 in 2011. The overall CS rate increased modestly from 15.4% in 1996 to 24.6% in 2014. Parallel with the gradual increase in overall CS rate, the proportion of elective CS compared with emergency CS also gradually increased from 25%-30% for 1995-2000 to 40%-45% for 2010-2014, indicating that an increasing number of CS were performed electively and the decision was made well ahead of labour, rather than as an emergency in the intrapartum period. There were significant increases in the proportion of women with previous CS (lowest 5% in 2000 to 16.2% in 2014), advanced maternal age of >35 years (lowest 13.2% in 1995 to 24.5% in 2014), induction of labour (lowest 8.5% in 2006 to 15.9% in 2014), and multiple pregnancies (1.1% in 1996 to 3.6% in 2014) during the study period (Fig 1). The crude perinatal mortality rate also fluctuated between 2.6 and 5.3 per 1000 deliveries; the adjusted perinatal mortality rate (excluding those major congenital malformations and birth weight of <750 g) also varied with an excursion of 1.9 and 3.5 per 1000 deliveries. Due to the small number variations with absolute crude perinatal mortality ranging between 10 and 27 per year, however, no obvious trends were identified during the study. The maternal mortality rate was lower than 5 per 100 000 pregnancies throughout the two decades with many years recorded as zero, so no trends could be observed due to the small variations.
 

Figure 1. Trends in CS rates of major epidemiological risk factors from 1995 to 2014
 
 
Comparison of the trend in Robson’s categories 1 to 4 for primiparous and multiparous women with term spontaneous labour (category 1 and 3) or induced labour or elective CS (category 2 and 4) revealed that the group of primiparous women with term spontaneous labour (category 1) had a consistent and gradual fall in CS rate from 14.4% to 10.8%, while the group of multiparous women with term spontaneous labour (category 3) also had a slight fall from 2.1% to 1.6%. The other categories remained quite stable (Fig 2). On the contrary, obvious trends showing a dramatic increase in CS rate were observed in those with previous CS (category 5, from 29% to 61%), breech presentation at delivery (category 6 and 7, primiparous from 72% to 97% and multiparous from 69% to 96%), and multiple pregnancy (category 8, from 35% to 86%). Although the CS rate for abnormal lie or malpresentation other than breech (category 9) approached 100% throughout the period and therefore displayed no significant trend, a subtle increase in CS rate was seen in those with preterm labour (category 10, from 17% to 25%) [Fig 2]. The data were then stratified into 5-year intervals and the CS rate for each category compared using a 2 x 4 contingency table. The above observed trends were confirmed to be statistically significantly different with P<0.05 for categories 1, 5, 6, 7, 8 and 10 (Table).
 

Figure 2. Trends in CS rates of Robson’s categories from 1995 to 2014
 
 

Table. Comparison of CS rates in the Robson’s Ten-group Classification System for 5-year intervals between 1995 and 2014
 
The data were then reorganised to show the percentage contribution of each Robson’s category to the total CS rate for each 5-year interval (Fig 3a). As there were wide differences in the absolute number of women in these categories, it could be seen that the contribution of categories 1, 2, 5, 6 and 8 tended to overwhelm the contribution of other categories. Thus, despite the modest fall in CS rates in category 1 over the four interims from approximately 14% to 11%, the impact on reducing the overall CS rates was predominant over other categories, amounting to almost 10% of all CS recorded. This effect, however, was counterbalanced by the contribution of categories 5 and 8 that increased the CS rates, and to the accumulated effects on increasing CS rates by other categories (Fig 3b), so that the net balance was an overall rise in CS rates from 15% to 24% within the study period.
 

Figure 3. (a) Percentage contribution and (b) percentage change to contribution of each Robson’s category to total caesarean section (CS) rates
 
 
Discussion
The data presented above revealed a gradual increase in overall CS rate of approximately 10% over the 20-year study period. While there was a significant reduction in the primary CS rate in low-risk primiparous women with spontaneous labour, this was counterbalanced by the ever-increasing CS rate in those with previous CS, breech presentation, multiple pregnancies, and to a lesser extent those with preterm labour. The data have demonstrated the advantages of using the Robson’s classification to analyse factors that will influence the overall CS rate.
 
The use of the Robson’s classification is increasing rapidly and spontaneously worldwide. Despite some limitations, the 10-group classification is easy to implement and interpret.11 12 It allows standardised comparisons of data across countries and time points, and identifies the subpopulations that drive changes in CS rates. The 10-group classification was easily applied to different levels of analysis from single-centre to multi-country datasets without problems of inconsistencies or misclassification,12 13 14 15 16 enabling specific groups of women to be clearly identified as the main contributors to the overall CS rate. Indeed, it has been demonstrated that this classification can help health care providers plan practical and effective care that targets specific groups of women to improve maternal and perinatal care.13 14 16 17
 
According to the WHO multi-country survey,9 CS rate was as high as 46% in China, 42% in Paraguay, and 40% in Ecuador with an overall mean of 26.4% for the 21 countries in the survey. Incremental rates as high as 18% within 3 to 4 years and a total CS rate of up to 80% have been reported in some parts of China.9 18 In Hong Kong, the annual CS rate rose steadily from 16.6% to 27.4% from 1987 to 1999, indicating a 65% increase over 12 years, with the CS rates in private institutions of approximately 27.4% higher than those in the public sector.4 The Hong Kong College of Obstetricians and Gynaecologists territory-wide audit has documented an increase in overall CS rates in Hong Kong from 27.1% in 1999 to 30.4% in 2004 and 42.1% in 2009,19 a drastic increase of 12% over a 5-year interval. The annual obstetric report of the HA in 2014 also showed varying CS rates among the eight public hospitals with obstetric services, ranging from 22.7% to 32%.20 The overall increase in CS rates of approximately 10% over the 20-year period to 24%-25% (approximately 0.5% per year on average) reported in the current study was modest in rate as well as lower in absolute value compared with the figures reported above, and those reported in other countries. The slight drop in CS rates for primiparous pregnancies with spontaneous term labour may be an important factor that mitigates the surge in CS rates in the study period.
 
Primary caesarean section (categories 1 to 4)
The current data have demonstrated a modest drop in CS rate for primiparous women with spontaneous labour (category 1) and a slight fall in multiparous women with spontaneous labour (category 3) although the rate for all women with induced labour or prelabour CS (category 2 and 4) has remained constant. Review of the labour ward management protocol in the unit during the study period revealed that the adoption of evidence-based active management of labour protocols since the late 90s (including regular formal audits in CS rates and indications), the implementation of ‘best practices’ such as vigilant use of partograms,21 early amniotomy,22 and prompt oxytocin augmentation for slow progress23 could have contributed to the gradual but progressive fall in CS rates in these low-risk women. Similar measures in labour management have been shown in cluster-randomised trials to be associated with significant, albeit small declines in primary CS rates driven by the effects in low-risk pregnancies.24 Indeed the magnitude of fall of 1% to 2% in CS rates in such studies was similar to that observed over the two decades in the current study. As this category of low-risk primiparous women with spontaneous labour usually constitutes approximately ≥30% of the entire obstetric population, the effects of a modest fall in CS rates in this group will have a major impact on the overall rate. Other national studies to evaluate the effect of labour attempts and labour success on primary CS rates have shown that the fall in CS rates might not be persistent. After a slight drop in the late 90s, the rate started to rise again between 2004 and 2010.25 In addition, other meta-analyses have shown that the effects of such active management of labour, while consistently associated with shorter duration of labour and no discernible differences in neonatal and maternal outcome, might not be associated with significant reductions in CS rates.26 It remains to be seen whether the modest fall in CS rate in primiparous low-risk women in the current study will persist in future years. The effects of still other more drastic attempts to curb primary CS rates in primiparous women, including redefining labour dystocia,27 postponing the cut-off for active labour at 6-cm dilatation, allowing adequate time for second stage of labour, and encouraging operative vaginal delivery28 require further evaluation.
 
Previous caesarean section (category 5)
The rising proportion of women with previous CS who undergo repeat CS has been shown by various studies to contribute significantly to the overall rise in CS rates. For instance, at a single tertiary hospital level, it was shown that the Robson’s classification easily identified multiparous women with a previous CS scar as the leading patient group that contributed to an increase in CS rates from 38% in 1998 to 43.7% in 2011.13 Similarly, on a national scale, a French population–based study using perinatal survey data showed that a continuous rise in the CS rate was observed in three patient groups, one of which was women with previous CS.16 On an even larger scale, a WHO global survey of 97 095 women who delivered in one of 120 facilities in eight countries showed that although women with a previous CS (category 5) represented only 11.4% of the obstetric population, they were the largest contributor to the overall CS rate (26.7% of all the CSs). This highlights the great burden of repeat CS and the need to curb primary CS in order to control CS rates.17 In our study, the repeat CS rate escalated sharply from approximately 30% to 50%-60% over the two decades. This could be explained by the abandonment of the use of X-ray and computed tomographic pelvimetry as a selection tool 15 years ago to decide which patients with previous CS can undergo a trial of labour.29 As evidence accumulated that pelvimetry is imprecise and fails to predict successful trial of vaginal birth after CS,30 a liberal policy of allowing women with previous CS to choose between elective repeat CS or trial of labour was adopted since 2001. Although this policy is not based on strong evidence, the progressive increase in CS rate in this category indicates the preference of a large proportion of patients to elect repeat CS based on the relative indication of previous CS.
 
Breech presentation (category 6 and 7)
The Term Breech Trial published in 2000 is a good example of an important landmark study that has affected clinical protocols adopted by the unit and thus the CS rates in the study period.31 This was an authoritative randomised controlled trial which concluded that planned CS carries a reduced perinatal mortality and early neonatal morbidity for babies with breech presentation at term compared with planned vaginal birth. Although these findings have been challenged in subsequent studies,32 33 the policy of sectioning all breech babies has been widely adopted in international guidelines.34 35 Thus, while the CS rate for breech presentation was already high at approximately 70%-75% at the beginning of the study period, it increased to well over 90% in the subsequent 10 to 15 years to comply with these recommendations. Within this study period, 10%-12% of women with breech presentation at term opted for external cephalic version (ECV) and approximately 65% had achieved a successful vaginal delivery. With better counselling to achieve a higher acceptance of a trial of ECV, a decline in CS in this category can be anticipated.
 
Multiple pregnancies (category 8) and preterm deliveries (category 10)
The policy of allowing women with a twin pregnancy to opt for CS delivery was even more controversial. Over 90% of these CS deliveries were elective, based on maternal choice rather than emergency intrapartum obstetric indications. Over the 20 years of the study, women with a twin pregnancy in which one fetus was breech opted for CS in order to avoid a vaginal breech delivery at all costs, despite the lack of good clinical supporting evidence if the first twin is in vertex presentation.36 This further evolved into a patient expectation that all twin pregnancies should be sectioned, again despite contrary evidence from randomised controlled trials that elective CS in uncomplicated twins offers no perinatal advantage.37 The data from the current study showed that the liberal clinical policy we have adopted gradually since 2003 to accommodate such expectations has resulted in an overwhelming rise in CS rates in multiple pregnancies from >40% to >80%, far in excess of that which could be explained by a breech presentation38 or other risk factors in either twin.
 
Similarly, the literature has not shown any particular perinatal survival benefit for CS in preterm delivery of a cephalic-presenting fetus.39 There is also good evidence that CS delivery at very early gestations is associated with increased morbidity in the mother.40 Despite this, we observed that a large proportion of the increase in preterm CS was a result of planned iatrogenic preterm deliveries largely due to specific maternal or fetal conditions such as pre-eclampsia or early-onset fetal growth restriction with evidence of fetal compromise. The modest increase in the use of CS in these cases from approximately 19% to 23%-24% more likely reflects the obstetrician’s increasing preference for CS in the management of these cases rather than women’s choice. Nevertheless, the increase was modest and comparable with that reported in other centres.41
 
Transverse or oblique presentation (category 9)
The overall contribution of this class to the overall CS rate was low. Stabilising induction after ECV was performed in only a small number of highly selected cases largely because of the low success rate (<30%), so that the impact of such a practice on CS rates in this category was limited. Hence the CS rate in this class remained high throughout the study period (>96%).
 
Strengths and limitations
A strength of the current study was the large sample size collected over a long duration of two decades to allow significant trends to be observed. As a single-centre study, the impact of authoritative scientific guidelines or a change to liberal management policies that allowed patients with relative indications to undergo CS delivery could be readily identified. Although patient epidemiology, risk factors, and case-mix were believed to contribute to the rising CS rates observed within the study period, such effects were not observed in all categories. For example, advanced maternal age should have caused an increase in CS rates for low-risk primiparous women yet this was not observed. Changes in obstetric management protocols could also play an important role in these increasing trends. For instance, the rising repeat CS rate for women with previous CS from 36.7% to 57.0% during the study period grossly exaggerated the absolute increase in the number of CS performed in women with previous uterine scars. Liberal rules for multiple pregnancies as described above were not entirely evidence-based, but were often adopted to meet patient expectations. It remained a limitation that we could not test the temporal relationship of CS trend to changes in obstetric practice to establish a causal relationship.
 
In this study, it could be argued that the trends observed are specific to a public obstetric unit that did not entertain CS at the mother’s request in the absence of any clinical indications. However, CS rates have been observed to rise similarly in all other HA hospitals as reflected in the HA annual obstetric reports since 1999. We believe that our practice is similar to that of other public institutions in Hong Kong and that our observations can serve to encourage other obstetric units to audit their own trends, analyse the extent of rise in each Robson’s category, and identify the target groups that contribute most significantly to the rise in CS rates. Appropriate changes may then be made to clinical management protocols.
 
Conclusion
The most significant trends in an increase in CS rates were in line with the clinical practice towards CS for those with relative indications such as previous CS, breech presentation, and multiple pregnancies. The drop in CS rates for primiparous pregnancies with spontaneous term labour could be ascribed to more vigilant active labour management, and because the large absolute number in this group had the effect of mitigating the overall surge in CS rates. The overall increase in CS rates of approximately 10% over the 20-year period was modest compared with figures reported previously in Hong Kong and in other developed countries.
 
Declaration
All authors have disclosed no conflicts of interest.
 
References
1. Betran AP, Torloni MR, Zhang J, et al. What is the optimal rate of caesarean section at population level? A systematic review of ecologic studies. Reprod Health 2015;12:57. Crossref
2. Belizán JM, Althabe F, Cafferata ML. Health consequences of the increasing caesarean section rates. Epidemiology 2007;18:485-6. Crossref
3. Betrán AP, Ye J, Moller AB, Zhang J, Gülmezoglu AM, Torloni MR. The increasing trend in caesarean section rates: global, regional and national estimates: 1990-2014. PLoS ONE 2016;11:e0148343. Crossref
4. Leung GM, Lam TH, Thach TQ, Wan S, Ho LM. Rates of cesarean births in Hong Kong: 1987-1999. Birth 2001;28:166-72. Crossref
5. Notzon FC. International differences in the use of obstetric interventions. JAMA 1990;263:3286-91. Crossref
6. Appropriate technology for birth. Lancet 1985;2:436-7.
7. Villar J, Valladares E, Wojdyla D, et al. Caesarean delivery rates and pregnancy outcomes: the 2005 WHO global survey on maternal and perinatal health in Latin America. Lancet 2006;367:1819-29. Crossref
8. Lumbiganon P, Laopaiboon M, Gulmezoglu AM, et al. Method of delivery and pregnancy outcomes in Asia: the WHO global survey on maternal and perinatal health 2007-08. Lancet 2010;375:490-9. Crossref
9. Vogel JP, Betrán AP, Vindevoghel N, et al. Use of the Robson classification to assess caesarean section trends in 21 countries: a secondary analysis of two WHO multicountry surveys. Lancet Glob Health 2015;3:e260-70. Crossref
10. Robson MS. Classification of caesarean sections. Fetal Matern Med Rev 2001;12:23-39. Crossref
11. Betrán AP, Vindevoghel N, Souza JP, Gülmezoglu AM, Torloni MR. A systematic review of the Robson classification for caesarean section: what works, doesn’t work and how to improve it. PLoS One 2014;9:e97769. Crossref
12. Torloni MR, Betran AP, Souza JP, et al. Classifications for cesarean section: a systematic review. PLoS One 2011;6:e14566. Crossref
13. Triunfo S, Ferrazzani S, Lanzone A, Scambia G. Identification of obstetric targets for reducing cesarean section rate using the Robson ten group classification in a tertiary level hospital. Eur J Obstet Gynecol Reprod Biol 2015;189:91-5. Crossref
14. Colais P, Fantini MP, Fusco D, et al. Risk adjustment models for interhospital comparison of CS rates using Robson’s ten group classification system and other socio-demographic and clinical variables. BMC Pregnancy Childbirth 2012;12:54. Crossref
15. Stavrou EP, Ford JB, Shand AW, Morris JM, Roberts CL. Epidemiology and trends for caesarean section births in New South Wales, Australia: a population-based study. BMC Pregnancy Childbirth 2011;11:8. Crossref
16. Le Ray C, Blondel B, Prunet C, Khireddine I, Deneux-Tharaux C, Goffinet F. Stabilising the caesarean rate: which target population? BJOG 2015;122:690-9. Crossref
17. Betrán AP, Gulmezoglu AM, Robson M, et al. WHO global survey on maternal and perinatal health in Latin America: classifying caesarean sections. Reprod Health 2009;6:18. Crossref
18. Huang K, Tao F, Bogg L, Tang S. Impact of alternative reimbursement strategies in the new cooperative medical scheme on caesarean delivery rates: a mixed-method study in rural China. BMC Health Serv Res 2012;12:217. Crossref
19. Yuen PM. Territory-wide audit in obstetrics and gynaecology 2014. Available from: http://www.hkcog.org.hk/hkcog/pages_3_77.html. Accessed Feb 2017.
20. Annual obstetric report 2014. Hong Kong: Hospital Authority; 2014.
21. Cox KJ, King TL. Preventing primary caesarean births: midwifery care. Clin Obstet Gynecol 2015;58:282-93. Crossref
22. Wei S, Wo BL, Qi HP, et al. Early amniotomy and early oxytocin for prevention of, or therapy for, delay in first stage spontaneous labour compared with routine care. Cochrane Database Syst Rev 2013;(8):CD006794. Crossref
23. Bugg GJ, Siddiqui F, Thornton JG. Oxytocin versus no treatment or delayed treatment for slow progress in the first stage of spontaneous labour. Cochrane Database Syst Rev 2013;(6):CD007123. Crossref
24. Chaillet N, Dumont A, Abrahamowicz M, et al. A cluster-randomized trial to reduce cesarean delivery rates in Quebec. N Engl J Med 2015;372:1710-21. Crossref
25. Simon AE, Uddin SG. National trends in primary cesarean delivery, labor attempts, and labor success, 1990-2010. Am J Obstet Gynecol 2013;209:554.e1-8. Crossref
26. Brown HC, Paranjothy S, Dowswell T, Thomas J. Package of care for active management in labour for reducing caesarean section rates in low-risk women. Cochrane Database Syst Rev 2013;(9):CD004907. Crossref
27. Boyle A, Reddy UM, Landy HJ, Huang CC, Driggers RW, Laughon SK. Primary cesarean delivery in the United States. Obstet Gynecol 2013;122:33-40. Crossref
28. American College of Obstetricians and Gynecologists, Society for Maternal–Fetal Medicine, Caughey AB, Cahill AG, Guise JM, Rouse DJ. Safe prevention of the primary cesarean delivery. Am J Obstet Gynecol 2014;210:179-93. Crossref
29. Pattinson RC, Farrell EM. Pelvimetry for fetal cephalic presentations at or near term. Cochrane Database Syst Rev 1997;(2):CD000161. Crossref
30. Dodd JM, Crowther CA, Huertas E, Guise JM, Horey D. Planned elective repeat caesarean section versus planned vaginal birth for women with a previous caesarean birth. Cochrane Database Syst Rev 2013;(12):CD004224. Crossref
31. Hannah ME, Hannah WJ, Hewson SA, Hodnett ED, Saigal S, Willan AR. Planned caesarean section versus planned vaginal birth for breech presentation at term: a randomised multicentre trial. Term Breech Trial Collaborative Group. Lancet 2000;356:1375-83. Crossref
32. Whyte H, Hannah ME, Saigal S, et al. Outcomes of children at 2 years after planned cesarean birth versus planned vaginal birth for breech presentation at term: the International Randomized Term Breech Trial. Am J Obstet Gynecol 2004;191:864-71. Crossref
33. Hannah ME, Whyte H, Hannah WJ, et al. Maternal outcomes at 2 years after planned cesarean section versus planned vaginal birth for breech presentation at term: the International Randomized Term Breech Trial. Am J Obstet Gynecol 2004;191:917-27. Crossref
34. Committee on Obstetric Practice. ACOG committee opinion: number 265, December 2001. Mode of term single breech delivery. Obstet Gynecol 2001;98:1189-90. Crossref
35. Royal College of Obstetricians and Gynaecologists. RCOG Green-top Guidelines: The management of breech presentation. Guideline No. 20b. December 2006. Available from: https://www.rcog.org.uk/globalassets/documents/guidelines/gtg-no-20b-breech-presentation.pdf. Accessed Feb 2017.
36. Rabinovici J, Barkai G, Reichman B, Serr DM, Mashiach S. Randomized management of the second nonvertex twin: vaginal delivery or cesarean section. Am J Obstet Gynecol 1987;156:52-6. Crossref
37. Barrett JF, Hannah ME, Hutton EK, et al. A randomized trial of planned cesarean or vaginal delivery for twin pregnancy. N Engl J Med 2013;369:1295-305. Crossref
38. Lee HC, Gould JB, Boscardin WJ, El-Sayed YY, Blumenfeld YJ. Trends in cesarean delivery for twin births in the United States: 1995-2008. Obstet Gynecol 2011;118:1095-101. Crossref
39. Riskin A, Riskin-Mashiah S, Lusky A, Reichman B; Israel Neonatal Network. The relationship between delivery mode and mortality in very low birthweight singleton vertex-presenting infants. BJOG 2004;111:1365-71. Crossref
40. Malloy MH. Impact of cesarean section on neonatal mortality rates among very preterm infants in the United States, 2000-2003. Pediatrics 2008;122:285-92. Crossref
41. Biswas A, Su LL, Mattar C. Caesarean section for preterm birth and, breech presentation and twin pregnancies. Best Pract Res Clin Obstet Gynaecol 2013;27:209-19. Crossref

Medium-term results of ceramic-on-polyethylene Zweymüller-Plus total hip arthroplasty

Hong Kong Med J 2017 Aug;23(4):333–9 | Epub 10 Mar 2017
DOI: 10.12809/hkmj164949
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Medium-term results of ceramic-on-polyethylene Zweymüller-Plus total hip arthroplasty
H Li, MD1*; S Zhang, MD2*; XM Wang, MD3; JH Lin, MD1; BL Kou, MD1
1 Arthritis Clinic and Research Center, Peking University People’s Hospital, Beijing, No.11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
2 Orthopaedic Department, Beijing Dongchengqu First People’s Hospital, Beijing, 100075, China
3 Orthopaedic Department, Beijing Moslem Hospital, Beijing, 100054, China
 
* The first two authors contributed equally to this work.
 
Corresponding authors: Dr JH Lin (jianhao_lin@hotmail.com), Dr BL Kou (bolongkoublk@163.com)
 
 Full paper in PDF
 
Abstract
Introduction: The need for better durability and longevity in total hip arthroplasty for patients with various hip joint diseases remains a challenge. This study aimed to obtain medium-term results at a follow-up of >10 years for Zweymüller-Plus total hip arthroplasty with ceramic-on-polyethylene bearing.
 
Methods: A retrospective study was conducted to review the results after a minimum of 12.4 years of 207 consecutive total hip arthroplasties in 185 patients in Peking University People’s Hospital in China using the Zweymüller SL-Plus stem in combination with the Bicon-Plus threaded cup and ceramic-on-polyethylene bearing between October 1994 and April 2000.
 
Results: During the study period, two patients (2 hips) died and 25 patients (28 hips) were lost to follow-up. Two hips were revised for aseptic loosening of the Bicon-Plus cup. The mean clinical and radiological follow-up was 14.1 years (range, 12.4-16.5 years) for the remaining 156 patients (175 hips). The mean (standard deviation) Harris Hip score for the 175 hips increased significantly from 39.3 (3.8) preoperatively to 94.1 (2.5) postoperatively at a mean follow-up of 14.1 years (P<0.05). Focal osteolysis was observed in seven (4.0%) of 175 stems and three (1.7%) of 175 cups. The Kaplan-Meier survival with revision for any reason as the end-point was 99.03% (95% confidence interval, 95%-100%).
 
Conclusions: The high survival rate of the cementless Zweymüller-Plus system with ceramic-on-polyethylene bearing at mid-term follow-up makes this total hip arthroplasty system reliable for patients with various hip joint diseases.
 
 
New knowledge added by this study
  • This study determined the medium-term outcome of Zweymüller-Plus total hip arthroplasty (THA) with ceramic-on-polyethylene bearing.
Implications for clinical practice or policy
  • Zweymüller-Plus THA has a good medium-term outcome and is reliable for patients with various hip joint diseases.
 
 
Introduction
Total hip arthroplasty (THA) is considered one of the most effective therapies for a variety of hip joint diseases. The cemented THA has been successfully performed since the 1960s but has been widely criticised in several postoperative follow-up studies for its later loosening.1 2 During the 1970s, cementless THA with different principles of fixation and various new materials was introduced. This prosthesis had good biocompatibility and its specific surface structure could achieve secondary fixation to bone that could avoid later loosening.3
 
The Zweymüller-Plus system (Smith & Nephew Orthopaedics AG; Rotkreuz, Switzerland), a kind of cementless THA that comprises the SL-Plus stem and Bicon-Plus cup, was introduced in 1993 as a successor to the Alloclassic system.4 It has been widely used for primary THA. Because of aseptic loosening due to polyethylene wear, alternative bearings were introduced.5 6 These alternative bearings included metal-on-metal, ceramic-on-ceramic, and ceramic-on-polyethylene articulation.7 8 The Zweymüller-Plus THA system with the ceramic-on-polyethylene bearing has been reported to have superior survival and durability at 10 years’ follow-up than other bearings.9 Additionally, in the mid-1990s in mainland China, the Zweymüller-Plus THA with ceramic-on-polyethylene bearing was the most common type of hip prosthesis. We report the results after a minimum of 12.4 years of an independent series using Zweymüller-Plus THA with ceramic-on-polyethylene bearing in a historical follow-up study.
 
Methods
Between October 1994 and April 2000, a total of 207 Zweymüller-Plus total hip replacements (Smith & Nephew Orthopaedics AG) with ceramic-on-polyethylene bearings were performed in 185 consecutive patients at Peking University People’s Hospital in China. The institutional review board of Peking University People’s Hospital approved this study, with the requirement of patient informed consent waived because of its retrospective nature.
 
Patients
Data on the patients including gender, age, hip distribution, initial diagnosis, complications, reason for revisions, and clinical outcome were obtained from the hospital database and retrospectively reviewed. Basic demographic data and indications for implantation of the prosthesis were collected.
 
Implants
The acetabular component was the Bicon-Plus cup (Smith & Nephew Orthopaedics AG), a biconical threaded cup made of hot-forged pure titanium (Fig 1). The Bicon-Plus cup has a microroughness of 4-6 µm and no coating on the microporous outer surface. The polyethylene inlay of the Bicon-Plus cup is made of conventional ultra-high-molecular-weight polyethylene that has been sterilised by gamma irradiation.
 
The femoral component was the SL-Plus stem, a cementless, rectangular, dual-tapered straight stem made of a wrought Ti-6Al-7Nb alloy with a microporous surface roughness of 4-6 µm (Smith & Nephew Orthopaedics AG; Rotkreuz, Switzerland; Fig 1). The femoral head with a diameter of 28 mm was made of high-grade alumina ceramics (the third-generation alumina ceramics). The edges of the SL-Plus stem were rounded to reduce the occurrence of distal femoral cortical thickening. The combination of polyethylene inlay with the 28-mm diameter ceramic femoral head constituted the ceramic-on-polyethylene bearing surface.
 

Figure 1. The Bicon-Plus cup with ceramic-on-polyethylene bearings and the SL-Plus stem
Reproduced with permission from Smith & Nephew Orthopaedics AG
 
Perioperative care
All THAs were performed by the senior surgeon (BL Kou) through a modified Hardinge direct lateral approach. The mean (± standard deviation) desired acetabular position was 45° ± 10° of abduction and 15° ± 10° of anteversion, the femoral position was 5°-10° of anteversion: both were evaluated by postoperative X-ray. In order to facilitate optimal insertion of the bone, the bone had to be shaped to the Bicon-Plus cup by matched directional devices. All patients received prophylactic antibiotics prior to surgery and subcutaneous low-molecular-weight heparin calcium for prophylaxis against thrombosis for 2 weeks postoperatively. Patients were discharged after a mean of 5 days after surgery. Mobilisation with full weight-bearing was encouraged the day after surgery. At postoperative 6 weeks, rehabilitation exercises were commenced and the hip joint mobilised.
 
Clinical and radiological assessment
The Harris Hip score (HHS),10 which is a disease-specific health-related quality-of-life instrument and widely used to evaluate physical function and pain relief in patients with various hip diseases, was used to clinically evaluate patients preoperatively, postoperatively, and at the most recent follow-up. Anteroposterior and lateral supine radiographs of the hip and femur were analysed for radiolucencies, osteolysis, and migration of the components, and compared with radiographs taken 2 weeks after surgery. Osteolytic areas and radiolucencies adjacent to the SL-Plus and Bicon-Plus were evaluated using the zones described by Gruen et al11 and DeLee and Charnley,12 respectively. Osteolysis was described as a sharply demarcated radiolucent space with rounded or scalloped appearance that was >2 mm wide.13 The migration of the cup was defined as movement of ≥3 mm in a horizontal or vertical direction and stem migration was defined as a change in position of >4 mm relative to the mid-lesser trochanter. Femoral implant stability was assessed by the radiographs according to the criteria of Engh et al,14 as stable with osseointegration or fibrous tissue ingrowth, or as unstable. Heterotopic ossification was evaluated using the criteria described by Brooker et al.15 Liner wear was determined by subtracting the thickness of the polyethylene on the first radiograph of the hip postoperatively in the standing position from the last available control radiograph corrected for enlargement and determined in relation to the diameter of the head component.15 We only included cases of annual liner wear of >0.1 mm/year due to the lack of precision of these measurements.
 
Statistical analysis
Demographic and X-ray variables were assessed with descriptive statistics. Kaplan-Meier survival analyses16 with 95% confidence intervals (CI) were used to determine the survival rate with the use of several end-points: revision for any reason or revision for aseptic loosening for each component of the THA system. All patients were included in the Kaplan-Meier analysis. Patients who died were censored at their date of death and patients who were lost to follow-up were censored at the date of last assessment. Continuous variables of HHS were compared using a two-sided Student’s t test. The Statistical Package for the Social Sciences (Windows version 19.0; IBM Corp, Armonk [NY], United States) was used to analyse the collected data. A P value of <0.05 was considered significant.
 
Results
Sample
Demographic data of patients and indications for implantation of the prosthesis are listed in Table 1. There were 95 women and 90 men, and the mean age (± standard deviation) at the time of the index surgery was 57.8 ± 13.8 years (range, 16-72 years). Overall, 161 patients (183 hips) underwent primary THA only and the most common indication was ischaemic femoral head necrosis (58 hips). Other indications included ankylosing spondylitis and femoral neck fracture (Table 1). Another 24 hips underwent surgery for revision (15 for aseptic loosening, 6 for migration of the acetabular component, and 3 for deep infection) and the mean time between the primary THA and this revision was 3.2 years.
 

Table 1. Patient demographics and distribution of hips
 
Follow-up
As shown in Figure 2, two patients (two hips) died without a revision prior to death for reasons unrelated to the surgery; the time between operation and death were 4.2 years and 5.1 years, respectively. Twenty-five patients (28 hips) were lost to follow-up. The main cause for patients lost to follow-up was change of residence and/or phone number. Revision was performed in two patients (two hips). A total of 156 patients (175 hips) were available for clinical and radiological evaluation, with a mean time between operation and final evaluation of 14.1 years (range, 12.4-16.5 years).
 

Figure 2. Schematic presentation of patient status at the most recent follow-up
 
Revisions
There were two (0.97%) revisions in the whole series of 207 hips. An example of good results at 16.5 years of follow-up is shown in Figure 3. The stem alone had not been revised in any hip. The Bicon-Plus cup alone had been revised in two hips, both for aseptic loosening. Radiographs of aseptic loosening of acetabular components before and after revision at 10.7 years until the latest follow-up are shown in Figure 4. Both revision surgeries were performed on men after 10.7 and 16.5 years postoperatively. No perioperative complications were observed after revision and the HHS were 92 and 96 post-revision, respectively.
 

Figure 3. An example of good outcome with Zweymüller-Plus total hip arthroplasty
Radiographs were taken from a 59-year-old female who underwent Zweymüller-Plus total hip arthroplasty at 16.5 years of follow-up in April 2012: (a) preoperative, (b) at 2 years of follow-up, (c) at 16.5 years of follow-up
 

Figure 4. An example of aseptic loosening of acetabular components
Radiographs were taken from a 56-year-old female who underwent Zweymüller-Plus total hip arthroplasty at 10.7 years of follow-up in July 2012: (a) before revision and (b) at 10 years of follow-up after revision
 
There were no other re-operations at the time of most recent follow-up. Two hips (two patients), however, showed excessive polyethylene wear of the liner although both were asymptomatic. Liner exchange was recommended but both patients refused. They were closely monitored for observation of wear progression and osteolysis development.
 
Radiological evaluation of surviving hips
Non-progressive radiolucent lines around the femoral component (<1 mm) were found in seven (4.0%) of 175 stems, all limited to the proximal femur (Gruen zone 7). Comparison of early and late postoperative radiographs revealed no signs of osteolysis in the distal femoral zones or subsidence of femoral prosthesis of >1 mm. Intramedullary ossification was found in five (2.9%) of 175 stems. There was no excessive liner wear in the remaining 173 hips.
 
Non-progressive radiolucent lines of <2 mm were found around the Bicon-Plus cup in three (1.7%) of 175 hips in DeLee-Charnley zone III. No extensive peri-acetabular osteolysis radiographically of >2 mm was observed in any hip. Heterotopic ossification was found in 23 (13.1%) of 175 hips with various degrees according to the criteria by Brooker et al.15 Among the 23 hips, 11 hips were considered Brooker grade I, eight hips were Brooker grade II, and the remaining four were Brooker grade III.
 
Clinical evaluation of surviving hips
A total of 156 patients (175 hips) were available for clinical and radiological evaluation. The mean HHS for the 175 hips increased significantly from 39.3 ± 3.8 preoperatively to 94.1 ± 2.5 postoperatively at a mean follow-up of 14.1 years (P<0.05).
 
Complications
Intra-operative complications including pulmonary and deep vein thrombosis were not observed in any patient. Surgical complications including calcar cracks, femoral fracture, deep infection, and dislocation did not occur in any patient. In addition, no medical complications were observed in cardiac, urinary, or psychiatric aspects.
 
Survival analysis
The Kaplan-Meier survival analysis, with the end-point being revision of any component for any reason, estimated the 14.1-year (minimum follow-up of 12.4 years) survival rate at 99.03% (95% CI, 95%-100%). Since the reason for both revisions was aseptic loosening of the Bicon-cup, the survival rate at a minimum of 12.4 years of follow-up with removal of any component for aseptic loosening and the probability of survival of acetabular components with revision for any reason were both 99.03% (95% CI, 95%-100%). In addition, the survival rate of the SL-Plus stem with revision for any reason was 100%. The worst case survival of this ceramic-on-polyethylene THA, when taking the two pending revision cases into account, with removal of any component for any cause as the end-point was 98.07% (95% CI, 84%-100%).
 
Discussion
Medium- to long-term follow-up studies are required to evaluate the effectiveness of orthopaedic implants in patients with various hip diseases. The present study was conducted in a group of 207 hips after a mean follow-up of 14.1 years to evaluate the medium-term effectiveness of the Zweymüller-Plus THA with ceramic-on-polyethylene bearings.
 
The main finding of this study was the relatively high survival rate of both implant components (100% for the femoral component and 99.0% for the acetabular component). The worst survival when taking the pending revisions into account was still 98.1%. Although methodological differences and dissimilar implant designs can limit comparison of different THAs, the survival rate of the stem and cup in our series is comparable or even higher than previous descriptions for other THAs, especially the Alloclassic system (Zimmer, Winterthur, Switzerland). Bonnomet et al17 reported that the 10-year survival with stem revision for any reason as the end-point of the Alloclassic-SL grit-blasted titanium stem in primary THA was 99.2%. For Alloclassic THAs with/without hydroxyapatite coating on the fixation of a cementless femoral stem, the 15-year survival of the stem for the event (revision for any reason) was 98.1%.18 For another cementless Zweymüller-Alloclassic system, a survival rate of 98% for the stem and 85% for the cup at 15 years with revision for any reason as the end-point has been reported.19 Femoral survival and acetabular survival with the Alloclassic system are shown in Table 2.17 18 19 20 Consistent with our results, long survival of Zweymüller-Plus components with ceramic-on-polyethylene bearings has been reported previously. A retrospective analysis of results after a mean follow-up of 11 years by Korovessis et al21 showed that the rate of survival was 100% for the Bicon-Plus and 98% for the SL-Plus. As a successor of the Alloclassic system, there are several improvements in the Zweymüller-Plus system. The sharp edges of the Alloclassic stem have been rounded in the SL-Plus stem and this may avoid distal stress concentration, cortical thickening, and subsequent thigh pain.22 23 Moreover the Bicon-Plus cup has inherent advantages over the Alloclassic cup when implanted in hips with deficient or deformed acetabulum since positioning of the biconical threaded cup does not require removal of so much spherical acetabular bone.21 All these features make the Zweymüller-Plus system hypothetically practical and stable.
 

Table 2. Comparison of survival studies
 
The type of bearing couple may be the major limitation for longevity of well-fixed hip implants.24 A previous comparison of four bearings revealed that ceramic-on-polyethylene bearing couple achieved the best results for revision for any reason (98.1%).9 Similar to a previous description, the survival of the ceramic-on-polyethylene bearings in the Zweymüller-Plus system was relatively high in our study (99.0%). Ceramic bearings have several advantages over other bearings such as a low coefficient of friction, low wear rates, and less biologically reactive debris.25 26 27 They also have several drawbacks such as susceptibility to fracture,28 although they avoid the adverse qualities associated with polyethylene.9 In our study, there were no revisions due to ceramic fracture.
 
The problems with polyethylene wear and osteolysis are often considered to compromise the long-term survival of implants. In an analysis based on the Norwegian Arthroplasty Register, Hallan et al29 showed that high revision rates for polyethylene wear and osteolysis lead to an obvious decline in survival after 10 years. There is an improvement in osteolysis of the Alloclassic cup compared with cemented polyethylene cups with ceramic-on-polyethylene bearing surfaces, since radiolucent lines and osteolysis in the Alloclassic cup were evident in 0% to 6% of cases after 9.3 to 12 years19 30 while osteolysis around cemented cups was present in 11% at 11.2 years.31 In our study, radiolucent lines and osteolysis in the Bicon-Plus cups was 1.7% at 14.1 years, which is lower than that in previous reports.19 30 Additionally, the osteolysis and radiolucent lines were all located proximally and did not extend around the distal part of the stem. The osteolysis rate (4%) of the SL-Plus stem at 14.1 years was also lower.
 
Our findings were tempered by the limitations inherent in our study design. The retrospective design and the high number of patients lost to follow-up might lead to excessively optimistic results. In addition, patients who died or who were lost to follow-up were not included in the clinical analysis although their data were included in the survival calculation to minimise the bias. Despite these limitations, our study with a relatively long follow-up and a large number of patients provides evidence of the clinical durability of the ceramic-on-polyethylene Zweymüller-Plus THA.
 
Conclusions
Our results indicate that the Zweymüller-Plus system with ceramic-on-polyethylene bearing showed a long survival and durability at a mean follow-up of 14.1 years, along with an improvement in osteolysis of both the SL-Plus stem and Bicon-Plus cup. Longer follow-up is still necessary to monitor the long-term outcomes for the Zweymüller-Plus system with ceramic-on-polyethylene.
 
Declaration
The authors declare that they have no competing interests.
 
References
1. Schulte KR, Callaghan JJ, Kelley SS, Johnston RC. The outcome of Charnley total hip arthroplasty with cement after a minimum twenty-year follow-up. The results of one surgeon. J Bone Joint Surg Am 1993;75:961-75. Crossref
2. Severt R, Wood R, Cracchiolo A 3rd, Amstutz HC. Long-term follow-up of cemented total hip arthroplasty in rheumatoid arthritis. Clin Orthop Relat Res 1991;(265):137-45. Crossref
3. Hailer NP, Garellick G, Kärrholm J. Uncemented and cemented primary total hip arthroplasty in the Swedish Hip Arthroplasty Register. Acta Orthop 2010;81:34-41. Crossref
4. Repantis T, Vitsas V, Korovessis P. Poor mid-term survival of the low-carbide metal-on-metal Zweymüller-Plus total hip arthroplasty system: a concise follow-up, at a minimum of ten years, of a previous report. J Bone Joint Surg Am 2013;95:e331-4. Crossref
5. Goldring SR, Clark CR, Wright TM. The problem in total joint arthroplasty: aseptic loosening. J Bone Joint Surg Am 1993;75:799-801. Crossref
6. Harris WH. Wear and periprosthetic osteolysis: the problem. Clin Orthop Relat Res 2001;(393):66-70. Crossref
7. Petsatodis GE, Papadopoulos PP, Papavasiliou KA, Hatzokos IG, Agathangelidis FG, Christodoulou AG. Primary cementless total hip arthroplasty with an alumina ceramic-on-ceramic bearing: results after a minimum of twenty years of follow-up. J Bone Joint Surg Am 2010;92:639-44. Crossref
8. Korovessis P, Petsinis G, Repanti M, Repantis T. Metallosis after contemporary metal-on-metal total hip arthroplasty. Five to nine-year follow-up. J Bone Joint Surg Am 2006;88:1183-91. Crossref
9. Topolovec M, Milošev I. A comparative study of four bearing couples of the same acetabular and femoral component: a mean follow-up of 11.5 years. J Arthroplasty 2014;29:176-80. Crossref
10. Davis KE, Ritter MA, Berend ME, Meding JB. The importance of range of motion after total hip arthroplasty. Clin Ortho Relat Res 2007;465:180-4.
11. Gruen TA, McNeice GM, Amstutz HC. “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Ortho Relat Res 1979;(141):17-27.
12. DeLee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Ortho Relat Res 1976;(121):20-32.
13. Zicat B, Engh CA, Gokcen E. Patterns of osteolysis around total hip components inserted with and without cement. J Bone Joint Surg Am 1995;77:432-9. Crossref
14. Engh CA, Bobyn JD, Glassman AH. Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg Br 1987;69:45-55.
15. Brooker AF, Bowerman JW, Robinson RA, Riley LH Jr. Ectopic ossification following total hip replacement. Incidence and a method of classification. J Bone Joint Surg Am 1973;55:1629-32. Crossref
16. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958;53:457-81. Crossref
17. Bonnomet F, Delaunay C, Simon P, et al. Straight femoral taper in cementless primary total hip replacement in less than 65 year-old patients: multicenter study of 115 consecutive implantations at mean 8.2 year follow-up [in French]. Rev Chir Orthop Reparatrice Appar Mot 2001;87:802-14.
18. Delaunay C. Effect of hydroxyapatite coating on the radio-clinical results of a grit-blasted titanium alloy femoral taper. A case-control study of 198 cementless primary total hip arthroplasty with the Alloclassic system. Orthop Traumatol Surg Res 2014;100:739-44. Crossref
19. Grübl A, Chiari C, Giurea A, et al. Cementless total hip arthroplasty with the rectangular titanium Zweymüller stem. A concise follow-up, at a minimum of fifteen years, of a previous report. J Bone Joint Surg Am 2006;88:2210-5. Crossref
20. Lass R, Grübl A, Kolb A, et al. Primary cementless total hip arthroplasty with second-generation metal-on-metal bearings: a concise follow-up, at a minimum of seventeen years, of a previous report. J Bone Joint Surg Am 2014;96:e37. Crossref
21. Korovessis P, Repantis T, Zafiropoulos A. High medium-term survivorship and durability of Zweymüller-Plus total hip arthroplasty. Arch Orthop Trauma Surg 2011;131:603-11. CrossRef
22. Grübl A, Chiari C, Gruber M, Kaider A, Gottsauner-Wolf F. Cementless total hip arthroplasty with a tapered, rectangular titanium stem and a threaded cup: a minimum ten-year follow-up. J Bone Joint Surg Am 2002;84-A:425-31. CrossRef
23. Garcia-Cimbrelo E, Cruz-Pardos A, Madero R, Ortega-Andreu M. Total hip arthroplasty with use of the cementless Zweymüller Alloclassic system. A ten to thirteen-year follow-up study. J Bone Joint Surg Am 2003;85-A:296-303. CrossRef
24. Zywiel MG, Sayeed SA, Johnson AJ, Schmalzried TP, Mont MA. State of the art in hard-on-hard bearings: how did we get here and what have we achieved? Expert Rev Med Devices 2011;8:187-207. Crossref
25. Murphy SB, Ecker TM, Tannast M. Two-to 9-year clinical results of alumina ceramic-on-ceramic THA. Clin Orthop Relat Res 2006;453:97-102. Crossref
26. Affatato S, Traina F, De Fine M, Carmignato S, Toni A. Alumina-on-alumina hip implants: a wear study of retrieved components. J Bone Joint Surg Br 2012;94:37-42. Crossref
27. Revell PA. The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses. J R Soc Interface 2008;5:1263-78. Crossref
28. Park YS, Hwang SK, Choy WS, Kim YS, Moon YW, Lim SJ. Ceramic failure after total hip arthroplasty with an alumina-on-alumina bearing. J Bone Joint Surg Am 2006;88:780-7. Crossref
29. Hallan G, Dybvik E, Furnes O, Havelin LI. Metal-backed acetabular components with conventional polyethylene: a review of 9113 primary components with a follow-up of 20 years. J Bone Joint Surg Br 2010;92:196-201. Crossref
30. Perka C, Fischer U, Taylor WR, Matziolis G. Developmental hip dysplasia treated with total hip arthroplasty with a straight stem and a threaded cup. J Bone Joint Surg Am 2004;86-A:312-9. Crossref
31. Sugano N, Nishii T, Nakata K, Masuhara K, Takaoka K. Polyethylene sockets and alumina ceramic heads in cemented total hip arthroplasty. A ten-year study. J Bone Joint Surg Br 1995;77:548-56.

Triplet pregnancy with fetal reduction: experience in Hong Kong

Hong Kong Med J 2017 Aug;23(4):326–32 | Epub 23 Jun 2017
DOI: 10.12809/hkmj176267
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Triplet pregnancy with fetal reduction: experience in Hong Kong
WT Tse, MB, ChB, MRCOG; LW Law, MB, ChB, MRCOG; Daljit S Sahota, PhD; TY Leung, MD, FRCOG; Yvonne KY Cheng, MB, ChB, MRCOG
Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
 
Corresponding author: Dr Yvonne KY Cheng (yvonnecheng@cuhk.edu.hk)
 
  A video clip showing triplet pregnancy with fetal reduction skills
 
 Full paper in PDF
 
Abstract
Introduction: Triplet and higher-order multiple pregnancies are well known to be associated with increased adverse outcomes. This study reviewed the perinatal outcomes in women with a triplet pregnancy who underwent fetal reduction versus expectant management at a university hospital in Hong Kong.
 
Methods: This was a retrospective review of triplet pregnancies at Prince of Wales Hospital in Hong Kong from 1 January 2008 to 30 September 2014. Women carrying a triplet pregnancy were classified as having had expectant management, fetal reduction to twins, or fetal reduction to a singleton. Maternal and pregnancy characteristics were compared. Outcome measures included fetal loss, gestational age at delivery, birth weight, neonatal survival rate, neonatal death, neonatal complications, and need for and length of neonatal intensive care unit stay.
 
Results: A total of 52 triplet pregnancies were identified. One pregnancy that was lost to follow-up and one that was terminated were excluded. The majority of pregnancies (84%) were the result of assisted reproductive technology. Fetal reduction was performed in 26 (52%) pregnancies, of which 22 were reduced to twins and four to a singleton. The mean gestations at delivery were 32.6, 35.2, and 39.6 weeks in the expectant management, fetal reduction to twins, and fetal reduction to a singleton groups, respectively. Significantly more pregnancies with expectant management resulted in a preterm birth. All pregnancies with fetal reduction to a singleton resulted in a term birth. A higher mean birth weight, lower neonatal death rate, and reduced need for admission to and length of stay in the neonatal intensive care unit were observed in the fetal reduction groups.
 
Conclusions: Approximately 50% of women with a triplet pregnancy in Hong Kong elected to undergo fetal reduction. This was associated with a significant reduction in extreme preterm delivery and associated morbidity and mortality.
 
 
New knowledge added by this study
  • This is the first study of fetal reduction in triplet pregnancy in Hong Kong.
  • About half of women with a triplet pregnancy in Hong Kong would elect to undergo fetal reduction.
  • Fetal reduction can significantly prolong the gestation at delivery and significantly reduce preterm delivery to <32 weeks.
Implications for clinical practice or policy
  • Women with a triplet pregnancy should be adequately counselled on the benefits and risks of fetal reduction to allow them to make an informed decision.
 
 
Introduction
The recent increasing availability and popularity of assisted reproductive technology (ART) has resulted in an increase in the incidence of multiple pregnancies.1 In the United States, the incidence of triplet pregnancies has increased two- to three-fold since the early 1980s.2 In Hong Kong, there was a 2.3-fold increase in ART procedures from 2009 to 2015, reaching over 11 000 procedures per year.3 The Council on Human Reproductive Technology of Hong Kong issued the Code of Practice on Reproductive Technology & Embryo Research in 2013 and limited the number of embryos transferred per cycle to three. Despite this recommendation, there has been no drop in the number of multiple pregnancies following ART, and the rate has remained at 6% since 2010.3 Thus multiple pregnancy is still a major obstetric concern in Hong Kong.
 
Triplet and higher-order multiple pregnancies are well known to be associated with increased adverse outcomes including maternal medical complications, pregnancy loss, intrauterine growth restriction, and preterm delivery. Triplet pregnancies have a four-fold increased risk of birth of <29 weeks compared with twin pregnancies.4 This is of particular concern as it significantly increases the perinatal morbidity and mortality due to prematurity. The risk of infant death in triplets is 3 times higher than that in twins.4
 
Reduction of triplets or higher-order multiple pregnancies has been performed since the 1980s. A meta-analysis of the early prospective non-randomised studies suggested that reduction of triplet pregnancies was associated with a reduction in maternal and fetal adverse outcomes.5 More importantly, the rate of early premature delivery (<32 weeks) can significantly be reduced following fetal reduction (FR), from 26%-33% to 5.5% for FR to a singleton and 10%-17% for FR to twins.6 7 8 Nonetheless, it is associated with procedure-related pregnancy loss in 4.5%-9.6% of cases when performed by fetal intracardiac injection of potassium chloride (KCl), and 8.8%-15% for cord coagulation.8 9 10 11
 
The objective of this study was to compare the perinatal outcomes for triplet pregnancy with and without FR at a university hospital in Hong Kong.
 
Methods
This was a retrospective cohort study conducted at Prince of Wales Hospital, Hong Kong. Triplet pregnancies with an expected date of confinement from 1 January 2008 to 30 September 2014 were retrieved from the prenatal diagnostic unit database and the Specialty Clinical Information System database. Demographics, and pregnancy and perinatal outcomes were reviewed. The data retrieval and review were performed by the first author, a medical officer from the department, who was not blinded to the study hypothesis. Women who carried a triplet pregnancy were classified into three groups: expectant management, FR to twins, or FR to a singleton.
 
Chorionicity and amnionicity were assessed during the first trimester by ultrasound. Women with a triplet pregnancy were offered counselling about the benefits and risks of expectant management versus FR to twins or a singleton. Specifically, women were counselled that approximately one third of triplet pregnancies resulted in preterm birth before 32 weeks of gestation. The aim of FR was primarily to reduce the risk of early preterm birth. Such risk can be reduced to 10%-18% following FR to twins and to 5%-8% if reduced to a singleton, although the procedure associated with a miscarriage rate of 5%-15%, depending on the method used.6 7 8 9 10 11 Ultimately, the decision for FR to twins or a singleton was dictated first by the mother’s wishes and second by whether FR was technically feasible. All procedures were performed in accordance with the Offences Against the Person Ordinance. The FR procedures carried out at the Prince of Wales Hospital were performed under real-time ultrasound guidance by Maternal and Fetal Medicine (MFM) specialists or supervised trainees. Some procedures were performed in the private sector. Choice of fetus(es) to be reduced depended on the presence of fetal abnormalities, placental location, and technical feasibility. Fetal gender was not revealed to the parents to avoid gender selection. Fetal intracardiac KCl injection was performed in fetuses with a separate placenta, that is, in trichorionic triamniotic (TCTA) triplets or when feticide was performed in both monochorionic fetuses of a dichorionic triamniotic (DCTA) pregnancy. A 20G needle was inserted transabdominally into the fetal heart and 1-5 mL of 14.9% KCl injected until fetal asystole was observed. Bipolar cord coagulation (BPC) or radiofrequency ablation (RFA) of the umbilical cord was performed in monochorionic fetuses in DCTA or monochorionic triamniotic (MCTA) triplets. In BPC, a 2-mm or 3-mm bipolar forceps was inserted transabdominally through a 3.9-mm trocar (Karl Storz, Tuttlingen, Germany) and the umbilical cord was grasped. Electrocautery was performed at a power setting of 20-60 W for a duration of 30-60 seconds. Two to three adjacent sites on the cord were cauterised. Cessation of blood flow through the umbilical cord was confirmed by colour and/or pulsed wave Doppler. In RFA, the radiofrequency needle (LaVeen SuperSlim Needle Electrode radiofrequency probe, 17G, 15 cm long; Massachusetts, United States) was inserted percutaneously into the fetal abdomen at the site of cord insertion. The prongs of the device were deployed and radiofrequency energy was applied in a stepwise fashion starting from 30 W and progressing to a maximum of 100 W; each energy level lasted no more than 2 minutes. Energy was applied until no blood flow was observed in the umbilical cord by colour and pulsed wave Doppler and a terminal fetal bradycardia was detected.
 
Women were discharged within 24 hours of the procedure, and were followed up 1 week later to confirm viability of the remaining fetus(es). Women who carried triplets and elected expectant management underwent elective caesarean delivery at 34 weeks. Monochorionic twins were delivered at 37 weeks and dichorionic twins at 38 weeks. Earlier delivery was indicated if there were maternal or fetal complications. The pregnancy outcomes studied included any pregnancy loss, gestational age at delivery, birth weight, neonatal survival rate, neonatal death, and neonatal complications: respiratory distress syndrome, chronic lung disease, intraventricular haemorrhage, necrotising enterocolitis, retinopathy of prematurity, neonatal sepsis, need for neonatal intensive care unit (NICU) care, and median length of NICU stay.
 
Ethics approval was obtained from the Institutional Review Board (CREC Ref No: 2016.697) with informed consent waived. The SPSS (Windows version 21.0; IBM Corp, Armonk [NY], US) was used for statistical analysis. Fisher’s exact test was used for categorical data, and Student’s t test for comparing the means between the expectant management and FR groups. A P value of <0.05 was taken as statistically significant.
 
Results
There were 52 triplet pregnancies during the study period. Two cases were excluded from analysis as one was lost to follow-up after 13 weeks of gestation, and the other had a termination of pregnancy (TOP) at 8 weeks for social reasons. Of the included pregnancies, 84% (42/50) were the result of an ART procedure, of which 14 resulted from ovulation induction and 28 from in-vitro fertilisation. Among those conceived by ovulation induction, seven also included intrauterine insemination. In these 42 pregnancies conceived by ART, 33 (78.6%) were TCTA, eight (19.0%) were DCTA, and one (2.4%) was MCTA.
 
In the 50 cases included in the analysis, 26 (52.0%) pregnancies underwent FR and the remaining 24 (48.0%) had expectant management. Of the 26 cases of FR, 22 (84.6%) were reduced from triplets to twins and four (15.4%) from triplets to a singleton. Two of the pregnant women in the expectant management group elected FR, however, this could not be done due to technical difficulties and so they were managed conservatively. All except three FR procedures were performed at the Prince of Wales Hospital between 10 and 13 weeks of gestation. The three cases of FR performed in the private sector had fetal intracardiac KCl injection between 7 and 9 weeks of gestation.
 
Maternal characteristics and pregnancy outcomes are shown in Table 1. Women who underwent FR were 1 to 2 years older than those who elected expectant management. Parity, method of conception, chorionicity, and method of feticide between the three groups were similar. There was no miscarriage of the whole pregnancy in any of the three groups although five pregnancies that were managed expectantly had spontaneous fetal loss of one of the fetuses, and one pregnancy with FR to twins miscarried one twin following FR. The numbers of spontaneous fetal losses before 24 weeks (ie miscarriage rate) were 6.9% (5/72) and 2.1% (1/48) in the expectant management group and FR group, respectively, and there was no statistical significance between the two groups. There were three cases of preterm rupture of membranes (ROM) following FR and in all three cases the parents elected TOP. One woman had fetal intracardiac KCl injection to reduce a TCTA triplet pregnancy to twins at 11 weeks, but ROM occurred at 15 weeks of gestation. In the other two cases where feticide was performed to reduce the triplets to a singleton, one was a case of MCTA triplets reduced to a singleton with BPC of two fetuses at 13 weeks, and the other was TCTA triplets reduced to a singleton by fetal intracardiac KCl injection in two fetuses at 11 weeks of gestation. For these two cases, ROM occurred at 1 day and 11 weeks after FR, respectively. There were only two cases of cord coagulation in this study. Apart from the case of BPC in MCTA triplets that resulted in ROM, the other case was also MCTA triplets with RFA performed at 12 weeks for FR to twin pregnancy. The procedure was uncomplicated and the twins were subsequently delivered at 35 weeks of gestation. The gestational age at delivery was significantly higher in the FR groups. The mean gestation at delivery was 32.6 weeks in the expectant management group versus 35.2 and 39.6 weeks in the FR to two fetuses and one fetus, respectively. The risk of extreme preterm delivery was also significantly lower in those with FR (P=0.001). In women with expectant management, 16.7% had extreme preterm delivery of <28 weeks, and 29.2% delivered before 32 weeks. In women with FR to two fetuses, there was no case of extreme preterm delivery of <28 weeks, and 23.8% delivered before 32 weeks. All pregnancies with FR to a singleton had term birth. None of the pregnancies was complicated by twin-to-twin transfusion syndrome and intrauterine growth restriction occurred in only two and one pregnancies in the expectant management and FR to twins groups, respectively.
 

Table 1. Maternal characteristics and pregnancy outcomes of triplet pregnancies
 
 
The neonatal outcome of the fetuses who survived beyond 24 weeks are reported in Table 2. There were two intrauterine fetal deaths, one in the expectant management group and one in the FR to twins group. All seven neonatal and post-neonatal deaths occurred in the expectant management group. These infants were all delivered <25 weeks and died of complications of prematurity. The mean birth weights in the FR groups to twins and a singleton were 553 g and 1073 g higher than that in the expectant management group, respectively. The need for NICU care (P=0.003) and length of NICU stay (P=0.040) were significantly higher in the expectant management group with no FR. Neonatal morbidities including respiratory distress syndrome, chronic lung disease, intraventricular haemorrhage, necrotising enterocolitis, retinopathy of prematurity, and neonatal sepsis were not statistically significant between the groups.
 

Table 2. Neonatal outcome in fetuses surviving beyond 24 weeks
 
 
Discussion
Multiple pregnancy is an increasingly important problem in obstetric practice as a result of the success of fertility procedures. Their incidence is expected to continue to rise as fertility services both in Hong Kong and in other nearby countries such as Taiwan, Thailand, and Mainland China become more accessible and affordable. As shown in our cohort, over 80% of triplet pregnancies were conceived by ART. This is the first study of the outcomes of triplet pregnancies following FR in Hong Kong. Of note, FR may not be acceptable to all parents, and parental choice has a strong influence on decisions about intervention. To make the best informed choice, parents should be counselled adequately on the benefits and risks of expectant management versus FR. The provision of local data on perinatal outcomes following FR is an essential part of that counselling.
 
The primary aim of FR is to reduce neonatal morbidity consequent to prematurity. Our results show that FR in a triplet pregnancy has the benefit of increasing the gestation at delivery and reducing the risk of extreme preterm delivery earlier than 32 and 28 weeks. The mean gestation at delivery was 32.6 weeks in the expectant management group versus 35.2 and 39.6 weeks in the FR to two fetuses and one fetus, respectively. This indicates that the performance of FR in Hong Kong is comparable with that reported in the literature and our results reaffirm previously reported data in which FR in triplet pregnancies to twins can prolong the pregnancy by approximately 3 weeks.12 In women with expectant management, 16.7% and 29.2% had extreme preterm delivery before 28 weeks and 32 weeks, respectively. In women with FR to two fetuses, there was no extreme preterm delivery of <28 weeks, and 23.8% delivered before 32 weeks. The risk of preterm delivery earlier than 32-33 weeks following FR has been reported to be between 24% and 37%,7 13 14 15 which are comparable to our results. All women with FR to one fetus had term deliveries. Despite the prolongation of pregnancy, however, the overall survival following FR was not significantly different to that following expectant management (Table 1). In fact, studies of FR in triplet pregnancies have not shown an increase in perinatal survival.12 13
 
Prolongation of pregnancy in the FR group leads to improvement in a number of outcomes. The FR group had a significantly higher birth weight. The need for NICU care and length of NICU stay were significantly lower. The seven neonatal deaths in our cohort were all of neonates from the expectant management group who were delivered <25 weeks and died of complications of prematurity. We were, however, unable to show a difference in neonatal morbidity due to the small numbers in each group.
 
The rates of spontaneous loss of the whole pregnancy in reduced versus non-reduced triplets have previously been reported to be 8.1% and 4.4%, respectively,7 although such loss rate can be reduced with increasing experience so that it is comparable with that in non-reduced triplets.6 10 11 In our study, there was no spontaneous total pregnancy loss. This may be because all procedures were carried out by MFM specialists or trainees with expertise in invasive fetal procedures. There were fetal losses in both the expectant management and FR groups, but it was not statistically significant. Three cases had prelabour ROM after FR, and these parents elected TOP due to poor prognosis. Most studies of FR report a procedure-related pregnancy loss or miscarriage rate,6 7 8 10 11 but there are no data for the rate of prelabour ROM after FR in triplet pregnancies. In complicated monochorionic pregnancies, the rate of prelabour ROM following cord coagulation has been reported to be 20% to 30%.9 16 17 On the contrary, the prelabour ROM rate was 12% after fetal intracardiac KCl injection in multichorionic pregnancies.18
 
This study found that only maternal age influenced a decision to undergo FR but this is contrary to the findings of other studies.7 13 19 A possible explanation is that in women with advanced age, multiple pregnancy will add additional maternal risks during the pregnancy and may influence a decision to undergo FR. When choosing FR to twins or a singleton, our results showed that the chorionicity of the triplet pregnancies most likely affected their choice: 64% (21/33) of those with TCTA triplets chose to have FR although 95% (20/21) opted for reduction to twins. In DCTA and MCTA triplets, only 27% and 33% proceeded to FR, respectively. As our study only had two cases of RFA or BPC performed in MCTA triplets, we cannot conclude any reason for a low rate of FR by cord coagulation. It is, however, possible that women believed there was a higher risk of miscarriage associated with RFA or BPC.
 
It must be emphasised that in women who choose to reduce one fetus in a DCTA pregnancy, the best option is to reduce one fetus in the monochorionic pair, not the fetus with a separate placenta, by fetal intracardiac KCl injection. Although the latter is technically easier, there would be continued risks of twin-to-twin transfusion syndrome or twin anaemia polycythaemia sequence when the singleton fetus is reduced to keep the monochorionic twins, and this poses significant risks to the pregnancy. The miscarriage risk before 24 weeks following FR of the fetus with a separate placenta has been reported to be as high as 23.5%.8 Therefore, women who elect to have FR of DCTA triplets to twins should be referred to a tertiary unit with expertise in FR and where more advanced techniques are readily available. Nevertheless, the best perinatal outcome in any type of triplets will be achieved by reducing two fetuses resulting in a singleton pregnancy.8 Women along with their partner should be aware of this and be adequately counselled so that they may make an informed decision.
 
This is the first study of FR in triplet pregnancy in Hong Kong. It provides valuable data on the local experience in FR that is useful in parental counselling. The strength of this study is that comprehensive perinatal outcomes were obtained in all pregnancies except two.
 
This study has limitations. First, the number of cases included was small, although we believe this is the largest cohort possible to be reported in Hong Kong as our hospital has the highest number of deliveries and receives referrals for FR from private obstetricians and other obstetric units in Hong Kong. Second, the number of cord coagulation procedures was limited, and no further analysis was possible to determine which cord coagulation procedure is superior.
 
Conclusions
Approximately 50% of women with a triplet pregnancy in Hong Kong elected to undergo FR, which can significantly prolong the gestation at delivery and significantly reduce preterm delivery of <32 weeks, although it is associated with risk of miscarriage and complications such as ROM. Women carrying a triplet pregnancy should be adequately counselled about the benefits and risks of FR so that they can make an informed decision.
 
Declaration
All authors have disclosed no conflicts of interest.
 
References
1. Pison G, Monden C, Smits J. Twinning rates in developed countries: trends and explanations. Popul Dev Rev 2015;41:629-49. Crossref
2. Martin JA, Osterman MJ, Thoma ME. Declines in triplet and higher-order multiple births in the United States, 1998-2014. NCHS Data Brief 2016;(243):1-8.
3. Council on Human Reproductive Technology, Hong Kong. Code of practice on reproductive technology & embryo research. Available from: http://www.chrt.org.hk/english/service/service_cod.html. Accessed 26 Jan 2017.
4. Luke B, Brown MB. Maternal morbidity and infant death in twin vs triplet and quadruplet pregnancies. Am J Obstet Gynecol 2008;198:401.e1-10. Crossref
5. Dodd J, Crowther C. Multifetal pregnancy reduction of triplet and higher-order multiple pregnancies to twins. Fertil Steril 2004;81:1420-2. Crossref
6. Evans MI, Berkowitz RL, Wapner RJ, et al. Improvement in outcomes of multifetal pregnancy reduction with increased experience. Am J Obstet Gynecol 2001;184:97-103. Crossref
7. Papageorghiou AT, Avgidou K, Bakoulas V, Sebire NJ, Nicolaides KH. Risks of miscarriage and early preterm birth in trichorionic triplet pregnancies with embryo reduction versus expectant management: new data and systematic review. Hum Reprod 2006;21:1912-7. Crossref
8. Morlando M, Ferrara L, D’Antonio F, et al. Dichorionic triplet pregnancies: risk of miscarriage and severe preterm delivery with fetal reduction versus expectant management. Outcomes of a cohort study and systematic review. BJOG 2015;122:1053-60. Crossref
9. Rossi AC, D’Addario V. Umbilical cord occlusion for selective feticide in complicated monochorionic twins: a systematic review of literature. Am J Obstet Gynecol 2009;200:123-9. Crossref
10. Stone J, Eddleman K, Lynch L, Berkowitz RL. A single center experience with 1000 consecutive cases of multifetal pregnancy reduction. Am J Obstet Gynecol 2002;187:1163-7. Crossref
11. Stone J, Ferrara L, Kamrath J, et al. Contemporary outcomes with the latest 1000 cases of multifetal pregnancy reduction (MPR). Am J Obstet Gynecol 2008;199:406.e1-4. Crossref
12. van de Mheen L, Everwijn SM, Knapen MF, et al. The effectiveness of multifetal pregnancy reduction in trichorionic triplet gestation. Am J Obstet Gynecol 2014;211:536.e1-6. Crossref
13. Chaveeva P, Kosinski P, Puglia D, Poon LC, Nicolaides KH. Trichorionic and dichorionic triplet pregnancies at 10-14 weeks: outcome after embryo reduction compared to expectant management. Fetal Diagn Ther 2013;34:199-205. Crossref
14. Wimalasundera RC. Selective reduction and termination of multiple pregnancies. Semin Fetal Neonatal Med 2010;15:327-35. Crossref
15. Antsaklis A, Souka AP, Daskalakis G, et al. Embryo reduction versus expectant management in triplet pregnancies. J Matern Fetal Neonatal Med 2004;16:219-22. Crossref
16. Bebbington MW, Danzer E, Moldenhauer J, Khalek N, Johnson MP. Radiofrequency ablation vs bipolar umbilical cord coagulation in the management of complicated monochorionic pregnancies. Ultrasound Obstet Gynecol 2012;40:319-24. Crossref
17. van den Bos EM, van Klink JM, Middeldorp JM, Klumper FJ, Oepkes D, Lopriore E. Perinatal outcome after selective feticide in monochorionic twin pregnancies. Ultrasound Obstet Gynecol 2013;41:653-8. Crossref
18. Mohammed AB, Farid I, Ahmed B, Ghany EA. Obstetric and neonatal outcome of multifetal pregnancy reduction. Middle East Fertil Soc J 2015;20:176-81. Crossref
19. Boulot P, Vignal J, Vergnes C, Dechaud H, Faure JM, Hedon B. Multifetal reduction of triplets to twins: a prospective comparison of pregnancy outcome. Hum Reprod 2000;15:1619-23. Crossref

How well are we managing fragility hip fractures? A narrative report on the review with the attempt to set up a Fragility Fracture Registry in Hong Kong

Hong Kong Med J 2017 Jun;23(3):264–71 | Epub 5 May 2017
DOI: 10.12809/hkmj166124
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
How well are we managing fragility hip fractures? A narrative report on the review with the attempt to set up a Fragility Fracture Registry in Hong Kong
KS Leung, MD, FHKCOS1; WF Yuen, BNurs, MSc1; WK Ngai, MB, BS, FHKCOS2; CY Lam, MB, BS, FHKCOS3; TW Lau, MB, BS, FHKCOS4; KB Lee, MB, ChB, FHKCOS5; KM Siu, MB, ChB, FHKCOS6; N Tang, MB, ChB, FHKCOS7; SH Wong, MB, BS, FHKCOS8; WH Cheung, BSc, PhD1
1 Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong
2 Department of Orthopaedics and Traumatology, North District Hospital, Sheung Shui, Hong Kong
3 Department of Orthopaedics and Traumatology, Tuen Mun Hospital, Tuen Mun, Hong Kong
4 Department of Orthopaedics and Traumatology, Queen Mary Hospital, Pokfulam, Hong Kong
5 Department of Orthopaedics and Traumatology, Queen Elizabeth Hospital, Jordan, Hong Kong
6 Department of Orthopaedics and Traumatology, Princess Margaret Hospital, Laichikok, Hong Kong
7 Department of Orthopaedics and Traumatology, Prince of Wales Hospital, Shatin, Hong Kong
8 Department of Orthopaedics and Traumatology, Caritas Medical Centre, Shamshuipo, Hong Kong
 
Corresponding author: Dr KS Leung (ksleung@cuhk.edu.hk)
 
 Full paper in PDF
 
Abstract
Introduction: In setting up a disease registry for fragility fractures in Hong Kong, we conducted a retrospective systematic study on the management of fragility hip fractures. Patient outcomes were compared with the standards from our orthopaedic working group and those from the British Orthopaedic Association that runs a mature fracture registry in the United Kingdom.
 
Methods: Clinical data on fragility hip fracture patients admitted to six acute major hospitals in Hong Kong in 2012 were captured. These included demographics, pre- and post-operative assessments, discharge details, complications, and 1-year follow-up information. Analysis was performed according to the local standards with reference to those from the British Orthopaedic Association.
 
Results: Overall, 91.0% of patients received orthopaedic care within 4 hours of admission and 60.5% received surgery within 48 hours. Preoperative geri-orthopaedic co-management was received by 3.5% of patients and was one of the reasons for the delayed surgery in 22% of patients. Only 22.9% were discharged with medication that would promote bone health. Institutionalisation on discharge significantly increased by 16.2% (P<0.001). Only 35.1% of patients attended out-patient follow-up 1 year following fracture, and mobility had deteriorated in 69.9% compared with the premorbid state. Death occurred in 17.3% of patients within a year of surgery compared with 1.6% mortality rate in a Hong Kong age-matched population.
 
Conclusions: The efficiency and quality of acute care for fragility hip fracture patients was documented. Regular geri-orthopaedic co-management can enhance acute care. Much effort is needed to improve functional recovery, prescription of bone health medications, attendance for follow-up, and to decrease institutionalisation. A Fracture Liaison Service is vital to improve long-term care and prevent secondary fractures.
 
 
New knowledge added by this study
  • This was the first study to review the standards and clinical outcomes of 2914 patients from six major hospitals in Hong Kong with fragility hip fracture.
Implications for clinical practice or policy
  • Strengths and weaknesses of current fragility hip fracture management were identified. Recommendations are made to improve care.
  • This study was the first phase in the process of setting up a Fragility Fracture Registry and reveals the usefulness of a disease registry for improving patient care.
 
 
Introduction
Fragility hip fracture is one of the most common fragility fractures and is becoming one of the major health care burdens on a society with an ageing population. Statistics of the Hospital Authority (HA) of Hong Kong (HK) reveal that the incidence of fragility fractures in 2014 (14 000 cases) was much higher than that for acute myocardial infarction (6383 cases) or acute cerebrovascular accident (11 187 cases). Number of patients admitted for hip fracture surgery increased from 3678 in 2000 to 4579 in 2011, ie 24.5% in 11 years.1 Although the annual age-specific risk of hip fracture slightly decreased, it is estimated that with the projected ageing population, fragility hip fractures in HK will number more than 6300 cases in 2020 and 14 500 cases in 2040, a 3-fold increase from 2011.1 Approximately 30% of patients under the age of 80 years were unable to walk independently 1 year after hip fracture and became home-bound; 20% to 40% of patients were admitted to an elderly care home; and all patients suffered both physically and psychologically with re-fracture and fear of falls.2 Hip fracture patients with poor functional recovery are unable to resume their pre-fracture function with a consequent deterioration in quality of life. Mortality at 1 year after hip fracture was as high as 27% in males and 15% in females.1
 
To monitor the outcomes of management and formulate standards of care in HK for fragility hip fracture, the Coordinating Committee in Orthopaedics & Traumatology of the HA proposed a Fragility Fracture Registry (www.ffr.hk) in 2013. It is hoped that the registry will ultimately help set the standards of care with respect to local demands, monitor patient care and implement preventive measures, thus improving the cost-effectiveness of fragility fracture care.
 
In the first phase of setting up the Fragility Fracture Registry, a retrospective study was conducted of fragility hip fractures treated at six acute public hospitals under the management of the HA. This study aimed to review the current fragility hip fracture management in HK, and compare the outcomes with the standards set by our working group with reference to the six evidence-based standards set by the British Orthopaedic Association (BOA) for the care of patients with fragility hip fracture.3
 
Methods
All patients with fragility hip fracture and admitted in the calendar year 2012 to the six hospitals in HK—Caritas Medical Centre, Prince of Wales Hospital, Princess Margaret Hospital, Queen Elizabeth Hospital, Queen Mary Hospital, and Tuen Mun Hospital—which are located in different clusters were included. Residents of HK aged 50 years and above with hip fracture sustained by a fall from a standing height were recruited. The number of fragility hip fractures from the six hospitals was approximately 60% of the total fragility hip fractures treated in Hong Kong during 2012. Those with atypical or pathological fracture were excluded. As 98% of patients with fragility hip fracture were managed in public hospitals, eligible patients were identified using the HA Clinical Data Analysis and Reporting System with disease coding of acute hip fracture (ICD-9-CM 820.X).4 Ethical approvals were obtained from all the six hospitals and the study was done in accordance with the principles outlined in the Declaration of Helsinki.
 
With reference to the National Hip Fracture Database of the United Kingdom (UK NHFD) and Scottish Hip Fracture Audit, the dataset was designed according to the acute, rehabilitation, and post-discharge practices in HK. Information was derived from the HA Clinical Management System and hospital records for the following: demographics, preoperative and postoperative assessments, surgical and discharge details, rehabilitation details, out-patient follow-up consultations and complications up to 1 year after fracture (Table 1). All data were input and managed using the Research Electronic Data Capture (REDCap) tool hosted at the Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong.5
 

Table 1. Data included in this study (a total of 103 data entry items; 70 to 80 items in a typical case)
 
Data were input by research assistants who understood medical terms and abbreviations. Data were validated for one in five cases selected randomly by six liaison teams located in the participating hospitals and composed of orthopaedic surgeons and nurses. Each liaison member was trained by the central research team in data validation and REDCap manipulation.
 
The data were analysed and compared with the standards set by our working group with reference to the six standards set by the BOA: Care of Patients with Fragility Fractures (known as the Blue Book; Box).3
 

Box. Standards for fragility hip fracture care set by working group and the Blue Book3
 
Descriptive statistics were used to describe the current hip fracture conditions in HK and outcomes compared with standards of care from HK orthopaedic working group with reference to BOA. The percentage was calculated based on the number of follow-up patients available at different time-points. Chi squared test was used to compare categorical data. The Statistical Package for the Social Sciences (Windows version 20.0; IBM Corp, Armonk [NY], US) was used to perform statistical analysis. Significance was set at P<0.05.
 
Results
Demographics
A total of 2914 fragility hip fractures were captured in the calendar year 2012 and the mean (± standard deviation) patient age was 82.1 ± 8.6 years (range, 50-104 years). Of the patients, 1979 (67.9%) were female; 2017 (73.7%) came from home and 719 (26.3%) from an elderly care home; 1119 (40.9%), 1541 (56.3%), and 20 (0.7%) patients had an American Society of Anesthesiologists (ASA) score of grade 2, 3, and 4, respectively (Table 2).
 

Table 2. Comparison of demographics, surgery details, and length of stay in acute hospitals between Hong Kong (HK) and the National Hip Fracture Database of the United Kingdom (UK NHFD)
 
Acute management
The mean time from presentation to the accident and emergency department to orthopaedic care was 2.3 hours (median time, 1.7 hours) with 91.0% patients receiving orthopaedic care within 4 hours. Geriatric or internal medicine review was performed in 764 (27.8%) patients although only 95 (3.5%) were routinely managed by a geriatrician preoperatively.
 
Surgery was performed in 2774 (96.8%) patients. The mean time to surgery was 62.7 hours (median time, 42.1 hours) with 1678 (60.5%) undergoing surgery in exactly 48 hours and 2172 (78.3%) within 2 calendar working days.
 
Intracapsular fracture occurred in 1358 (46.6%) patients of whom 277 (9.5%) underwent cannulated screw fixation, 829 (28.4%) uncemented unipolar hemiarthroplasty, and 109 (3.7%) cemented unipolar hemiarthroplasty. Intertrochanteric fracture occurred in 1446 (49.6%) patients of whom 571 (19.6%) underwent compression hip screw fixation and 983 (33.7%) intramedullary fixation (Tables 2 and 3).
 

Table 3. Summary of hip fracture outcomes in Hong Kong
 
During stay in acute hospitals, some of the patients developed acute complications, with nearly one fourth experienced urine retention. A small number of patients developed other complications like pressure sore, delirium, wound infection, and deep vein thrombosis (Table 3).
 
The mean length of stay in acute hospitals was 12.1 days. With regard to the discharge destination from the acute unit, a majority of patients (2284, 78.4%) were transferred to a rehabilitation unit, 290 (10.0%) to an old-age home, 236 (8.1%) to their previous home, and 77 (2.6%) died during the acute admission (Table 3).
 
Rehabilitation phase
Allied health professionals provided preoperative multidisciplinary care to 1759 (64.0%) patients and postoperative care to 2886 (99.4%). Bone health medication was prescribed to 424 (15.3%) patients preoperatively and 666 (22.9%) postoperatively. Just over half of all patients (n=1573, 57.5%) were discharged to their home and 1163 (42.5%) to an old-age home. Old-age home admission at discharge significantly increased (P<0.001) [Table 4].
 

Table 4. Change in residential status and mobility in Hong Kong
 
Post-discharge management
There was a declining trend over time for attendance at follow-up; 2179 (74.8%) attended follow-up at 90 days after fracture, 2508 (86.1%) at 180 days, and only 1023 (35.1%) at 1 year. Postoperative mobility compared with premorbid had deteriorated at 90-day, 180-day, and 1-year follow-up in 1689 (77.5%), 2062 (82.2%), and 715 (69.9%) patients, respectively. With those 669 patients available for assessments at both 90-day and 1-year time-points, 511 patients had deterioration at 90 days and 426 patients deteriorated at 1 year. The deterioration was significant at 1-year follow-up (P<0.001) [Table 4]. Pressure sores were evident or developed in 58 (2.0%) patients preoperatively and 150 (5.3%) at 1 year. Presence of pressure sore significantly increased at 1 year (P<0.001) [Table 4].
 
Fracture complications occurred in 175 (6.0%) patients within a year (Table 3) with 90 (3.1%) requiring revision surgery. A secondary fracture occurred in 117 (4.0%) patients and 505 (17.3%) patients died in 1 year compared with the 1.6% mortality rate for a HK age-matched population.6 7
 
Discussion
This report reviewed the management of fragility hip fractures in HK based on the standards of care by our orthopaedic community and compared the outcomes with the standards set by our working group and by BOA in the UK.
 
The demographics were comparable to previous studies in HK. The mean age of patients with fragility hip fracture in our 2012 data was 82.1 years, unchanged compared with local data from 2000 to 2011.1 The female-to-male ratio was around 2:1 indicating an increase in male fragility hip fractures compared with 2.5:1 from 2001 to 2010.4 8 This may be due to increasing life expectancy of the HK male population9 and bone mineral density (BMD) at the hip in men that decreases with age.10 There were 1257 (46.6%) femoral neck fractures, 1445 (49.6%) intertrochanteric fractures, and 110 (3.8%) subtrochanteric fractures, comparable with a previous local study of 1342 hip fracture patients from 2007 to 2010.8 The majority of patients had an ASA score of 2 and 3, comprising 40.9% and 56.3%, respectively and in line with Lau et al’s study.8 There was a marked increase in hemiarthroplasties and intramedullary fixations with 977 (33.5%) and 983 (3.7%) cases respectively in our study, compared with Lau et al’s study that reported 362 (27%) hemiarthroplasties and 218 (16%) cephalomedullary nail fixations.8 This reflects a change in the surgical treatment, possibly due to a lower re-operation rate,11 better functional outcomes,12 and higher cost-effectiveness13 in patients treated with hemiarthroplasty; and minimal rate of fixation failure, less blood loss, and shorter length of hospital stay in patients treated with intramedullary fixation.14
 
A low complication rate (6.0%) and revision rate (3.1%) are testimony to the improved standard of routine acute care, which includes early orthopaedic care and early surgeries.
 
Consequences of fragility hip fracture
Poor functional recovery was evident in the large proportion of patients (77.5%) with deteriorated mobility at 90-day out-patient clinic follow-up, not improved 1 year after fracture (69.9%). This compares with less than half of treated patients who regained their pre-fracture mobility in another study.15 According to an internal survey conducted at Prince of Wales Hospital, only 22% of patients received out-patient physiotherapy; the major reason (71%) was “not referred”. Inadequate rehabilitation after discharge may explain poor functional recovery after hip fracture. On discharge, HK patients discharged to an old-age home significantly increased from 26.3% to 42.5%, ie a 16.2% increase in institutionalisation compared with only 10.5% in a Spanish study.16 Poor functional recovery after hip fracture may contribute to this high institutionalisation rate, as fractures are significantly associated with mild-to-severe functional limitations.17 Lack of support in the community may mean a lack of sustained rehabilitation after discharge. Family support may also be suboptimal as many elderly are alone at home during the day.
 
Low follow-up attendance and high mortality
The attendance rate for out-patient clinic follow-up was only 35.1% at 1 year. A high proportion of elderly living alone (12.7% in 2011)18 and a high institutionalisation rate (5.7% in 2014)19 may explain the low follow-up rate due to lack of support. The mortality at 1 year after fracture was 17.3%, comparable with other local studies: 18.6% from 2000 to 20061 and 18.0% from 2001 to 2009,4 which are much higher than that for an age-matched population (1.6%).6 7
 
Comparison with standards in the United Kingdom
Data from this review were also compared with those of the UK NHFD 201220 collected from 180 hospitals across the UK with patients managed according to the UK Blue Book standards.3
 
Tables 2 and 5 summarise the demographics, surgery details, length of stay in acute hospitals, and comparison of six standards for hip fracture care between HK and UK NHFD, respectively. Major differences in hip fracture management between HK and UK NHFD are identified.
 

Table 5. Comparison of six standards for hip fracture care between Hong Kong (HK) and the National Hip Fracture Database of the United Kingdom (UK NHFD)3 in 2012
 
When comparing the demographics, our review showed a larger male hip fracture population (32%) than the UK (26%) while age and ASA grade distribution were similar. Patients treated surgically were similar in both databases; more HK patients had intertrochanteric fracture (49.6% vs 34.3%) and more UK patients had displaced intracapsular fracture (46.8% vs 36.5%). The length of stay in acute hospitals in HK was shorter than in UK (12.1 days vs 15.8 days). The mean length of post-acute stay in the UK was only 4.4 days, however, which is shorter than that in HK (around 3-4 weeks). This may be due to the differences in acute and post-discharge care between HK and the UK. Care by a general practitioner after being discharged from hospital is the usual practice in the UK; in HK, most patients will be cared for by an orthopaedic team in post-acute rehabilitation with follow-up in orthopaedic specialist clinics until discharge.
 
In HK, 98% of patients underwent a falls assessment on admission, similar to the UK (92%). In HK, a Morse Fall Scale27 will be calculated by orthopaedic nurses on admission; in the UK, a systematic assessment is performed by a geriatrician or a specialist nurse to prevent further falls.8
 
Quick surgery under Key Performance Indicator
With regard to the six standards for hip fracture care set by the BOA Blue Book (Box and Table 5), 61% of HK patients had surgery within exactly 48 hours, compared with 35% in Spain21 and less than 10% in China22; in the UK, 83% of patients received surgery within 48 hours and during working hours. The percentage of HK patients who underwent surgery within 2 calendar working days was 30% before 2007 and improved to 62% in 2008 after the establishment of Key Performance Indicator (KPI) by the HA and 78.3% in 2012.23 The aim of KPI is to ensure 70% of hip fracture patients receive surgery within 2 calendar working days.24 25 This may explain why a large proportion of patients had quick hip fracture surgery in HK. The delay in surgery for 22% of patients may have been due to time spent awaiting medical optimisation by physicians or geriatricians.
 
Importance of geri-orthopaedic co-management
Very few patients in HK (3.5%) received preoperative assessment by geriatricians in contrast to 43% of patients in the UK. In this review, only one of the six studied hospitals had a geriatrician who routinely assessed hip fracture patients pre- and post-operatively, indicating a lack of geri-orthopaedic co-management in HK. Studies have shown better outcomes after hip fracture when patients receive geri-orthopaedic treatment, with a lower 1-year mortality rate,26 27 reduced acute hospital stay, and less need for further rehabilitation.27 A local study reviewed the effectiveness of geri-orthopaedic co-management and found that in the geri-orthopaedic group, time to surgery was shorter, 1-year mortality rate was lower, and more remained independent in daily living activities.28 Therefore, geri-orthopaedic care should be implemented in all hospitals in HK to achieve better patient care. This will further improve the KPI for fragility hip fractures in all hospitals in HK.
 
Low prescription rate of bone protection medication
Only 23% of HK patients were discharged with bone protection medication compared with almost 70% in the UK (Table 5) and nearly 40% in Korea (excluding calcium and vitamin D).29 A local study showed that 33% were prescribed medications for osteoporosis in the 6 months after discharge.30 Osteoporosis diagnosis and treatment were driven by BMD measurement, not fracture history.30 This may explain the low prescription rate of bone protection medication when the fracture patient did not undergo BMD measurement for a variety of reasons such as unavailability of dual-energy X-ray absorptiometry (DXA), long queuing time, or lack of referral from orthopaedic doctors. Although the need for DXA measurement prior to prescription of bone health medication to patients with fragility fracture remains controversial, it is clear that DXA measurement is not the only single indication for such medication.31
 
Importance of Fracture Liaison Services
In view of the low follow-up rate, poor functional recovery, increased institutionalisation, and high mortality after fragility hip fracture, better post-discharge rehabilitation and secondary fracture prevention should be implemented to restore patients’ physical and psychological status.
 
Fracture Liaison Services (FLS) is a coordinator-based service for sustained rehabilitation in the community and secondary fracture prevention in patients with fragility fractures. It has been implemented in many countries—eg the UK,32 Australia,33 Canada34—and studies reveal that FLS is cost-effective. Implementation of FLS in HK may improve current post-discharge care. Such services include osteoporosis identification and treatment (eg DXA scan and prescription of bone protection medication), education about secondary fracture prevention (exercise, dietary guidelines, and an education programme), and sustainable multidisciplinary services (follow-up by FLS coordinator regularly). With FLS, fragility hip fracture patients with osteoporosis can be identified and treated promptly with good compliance with medications. Patients will be instructed to exercise to improve functional status with a potential consequent decrease in old-age home admission. They will also be taught about falls prevention and sustained rehabilitation, and hence lower the chance of secondary fracture.
 
Limitations of this study
This study included approximately 60% of all HK fragility hip fractures. It would be better to include all HK hospitals in future studies to reflect the full situation across the territory. This study retrospectively reviewed medical records from 2012 with data retrieved from electronic and handwritten records so a small percentage of data may have been missing due to illegible records. A standardised electronic format from the Clinical Management System will improve data capture and analysis. A disease registry is important to enable better documentation.
 
Conclusions
This study reviewed the current fragility hip fracture care in HK. Although acute surgical treatment complies with international standards, standardised geri-orthopaedic co-management will further improve the acute care. Recognising fragility hip fracture as a chronic disease model, the increased rate in old-age home admission, poor functional recovery, low prescription rate of bone health medications, and low attendance rate for follow-up were identified as problems in subsequent management. These may explain the higher 1-year mortality rate, high secondary fracture rate, and deterioration in the quality of life after fracture among these elderly. With an ageing population and increasing longevity, the hip fracture rate is expected to increase continuously. A comprehensive multidisciplinary chronic disease management model that includes geri-orthopaedic co-management and FLS programmes should be implemented to improve patient outcomes, prevent secondary fractures, and reduce the economic burden on HK. The setting up and maintenance of a registry of all fragility fractures is imminent and will help health care professionals monitor and continuously improve the standards of patient care as well as prevent fractures.
 
Acknowledgements
This study was partially supported by grant support of Asian Association for Dynamic Osteosynthesis (Ref: AADO-RF2012-001-2Y) and Professional Services Development Assistance Scheme, Commerce and Economic Development Bureau, Government of the Hong Kong Special Administrative Region. The authors would like to thank the liaison teams that comprised doctors and nurses of the Department of Orthopaedics and Traumatology from the six participating hospitals for their help in data validation.
 
Declaration
All authors have disclosed no conflicts of interest.
 
References
1. Man LP, Ho AW, Wong SH. Excess mortality for operated geriatric hip fracture in Hong Kong. Hong Kong Med J 2016;22:6-10. Crossref
2. Fierens J, Broos PL. Quality of life after hip fracture surgery in the elderly. Acta Chir Belg 2006;106:393-6. Crossref
3. The care of patients with fragility fracture. British Orthopaedic Association; 2007.
4. Chau PH, Wong M, Lee A, Ling M, Woo J. Trends in hip fracture incidence and mortality in Chinese population from Hong Kong 2001-09. Age Ageing 2013;42:229-33. Crossref
5. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42:377-81. Crossref
6. Population estimates. Census and Statistics Department, Hong Kong SAR Government; 2016.
7. Tables on health status and health services 2012. Department of Health, Hong Kong SAR Government; 2013.
8. Lau TW, Fang C, Leung F. The effectiveness of a geriatric hip fracture clinical pathway in reducing hospital and rehabilitation length of stay and improving short-term mortality rates. Geriatr Orthop Surg Rehabil 2013;4:3-9. Crossref
9. Women and men in Hong Kong key statistics. Census and Statistics Department, Hong Kong SAR Government; 2016.
10. Lau EM, Leung PC, Kwok T, et al. The determinants of bone mineral density in Chinese men—results from Mr. Os (Hong Kong), the first cohort study on osteoporosis in Asian men. Osteoporos Int 2006;17:297-303. Crossref
11. Shields E, Kates SL. Revision rates and cumulative financial burden in patients treated with hemiarthroplasty compared to cannulated screws after femoral neck fractures. Arch Orthop Trauma Surg 2014;134:1667-71. Crossref
12. Gjertsen JE, Vinje T, Engesaeter LB, et al. Internal screw fixation compared with bipolar hemiarthroplasty for treatment of displaced femoral neck fractures in elderly patients. J Bone Joint Surg Am 2010;92:619-28. Crossref
13. Waaler Bjornelv GM, Frihagen F, Madsen JE, Nordsletten L, Aas E. Hemiarthroplasty compared to internal fixation with percutaneous cannulated screws as treatment of displaced femoral neck fractures in the elderly: cost-utility analysis performed alongside a randomized, controlled trial. Osteoporos Int 2012;23:1711-9. Crossref
14. Ma KL, Wang X, Luan FJ, et al. Proximal femoral nails antirotation, Gamma nails, and dynamic hip screws for fixation of intertrochanteric fractures of femur: a meta-analysis. Orthop Traumatol Surg Res 2014;100:859-66. Crossref
15. Vochteloo AJ, Moerman S, Tuinebreijer WE, et al. More than half of hip fracture patients do not regain mobility in the first postoperative year. Geriatr Gerontol Int 2013;13:334-41. Crossref
16. Uriz-Otano F, Pla-Vidal J, Tiberio-López G, Malafarina V. Factors associated to institutionalization and mortality over three years, in elderly people with a hip fracture—An observational study. Maturitas 2016;89:9-15. Crossref
17. Woo J, Ho SC, Yu LM, Lau J, Yuen YK. Impact of chronic diseases on functional limitations in elderly Chinese aged 70 years and over: a cross-sectional and longitudinal survey. J Gerontol A Bio Sci Med Sci 1998;53:M102-6. Crossref
18. Thematic report: older persons. Census and Statistics Department, Hong Kong SAR Government; 2011.
19. Challenges of population ageing. Research Brief, Issue 1, 2015-2016. Hong Kong: Research Office, Legislative Council Secretariat; 2015.
20. National report 2012. The UK National Hip Fracture Database; 2012.
21. Vidán MT, Sánchez E, Gracia Y, Marañón E, Vaquero J, Serra JA. Causes and effects of surgical delay in patients with hip fracture: a cohort study. Ann Intern Med 2011;155:226-33. Crossref
22. Tian M, Gong X, Rath S, et al. Management of hip fractures in older people in Beijing: a retrospective audit and comparison with evidence-based guidelines and practice in the UK. Osteoporos Int 2016;27:677-81. Crossref
23. Lau PY. To improve the quality of life in elderly people. Hong Kong Med J 2016;22:4-5.
24. New framework for key performance indicators (AOM-P530). Hong Kong: Hospital Authority; 2008.
25. Guidebook on key performance indicators. 2nd ed. Hong Kong: Hospital Authority; 2015.
26. Folbert EC, Hegeman JH, Vermeer M, et al. Improved 1-year mortality in elderly patients with a hip fracture following integrated orthogeriatric treatment. Osteoporos Int 2017;28:269-77. Crossref
27. Henderson CY, Shanahan E, Butler A, et al. Dedicated orthogeriatric service reduces hip fracture mortality. Ir J Med Sci 2017;186:179-84. Crossref
28. Leung AH, Lam TP, Cheung WH, et al. An orthogeriatric collaborative intervention program for fragility fractures: a retrospective cohort study. J Trauma 2011;71:1390-4. Crossref
29. Kim SC, Kim MS, Sanfélix-Gimeno G, et al. Use of osteoporosis medications after hospitalization for hip fracture: a cross-national study. Am J Med 2015;128:519-26.e1. Crossref
30. Kung AW, Fan T, Xu L, et al. Factors influencing diagnosis and treatment of osteoporosis after a fragility fracture among postmenopausal women in Asian countries: a retrospective study. BMC Womens Health 2013;13:7. Crossref
31. Ito K, Leslie WD. Cost-effectiveness of fracture prevention in rural women with limited access to dual-energy X-ray absorptiometry. Osteoporos Int 2015;26:2111-9. Crossref
32. McLellan AR, Gallacher SJ, Fraser M, McQuillian C. The fracture liaison service: success of a program for the evaluation and management of patients with osteoporotic fracture. Osteoporos Int 2003;14:1028-34. Crossref
33. Cooper MS, Palmer AJ, Seibel MJ. Cost-effectiveness of the Concord Minimal Trauma Fracture Liaison service, a prospective, controlled fracture prevention study. Osteoporos Int 2012;23:97-107. Crossref
34. Bogoch ER, Elliot-Gibson V, Beaton DE, Jamal SA, Josse RG, Murray TM. Effective initiation of osteoporosis diagnosis and treatment for patients with a fragility fracture in an orthopaedic environment. J Bone Joint Surg Am 2006;88:25-34. Crossref

Factors that influence recurrent lumbar disc herniation

Hong Kong Med J 2017 Jun;23(3):258–63 | Epub 3 Mar 2017
DOI: 10.12809/hkmj164852
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Factors that influence recurrent lumbar disc herniation
Mesut E Yaman, MD1; Atilla Kazancı, MD2; Nur D Yaman, MD3; Ferhat Baş4; Gıyas Ayberk, MD2
1 Department of Neurosurgery, Memorial Ankara Hospital, Ankara, Turkey
2 Department of Neurosurgery, Ataturk Education and Research Hospital, Ankara, Turkey
3 Ankara University School of Medicine, Ankara, Turkey
4 Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
 
An earlier version of this paper was presented orally at the 15th World Congress of Neurosurgery held in Seoul, South Korea on 8-13 September 2013.
 
Corresponding author: Dr Mesut E Yaman (mesutemreyaman@hotmail.com)
 
 Full paper in PDF
 
Abstract
Introduction: The most common cause of poor outcome following lumbar disc surgery is recurrent herniation. Recurrence has been noted in 5% to 15% of patients with surgically treated primary lumbar disc herniation. There have been many studies designed to determine the risk factors for recurrent lumbar disc herniation. In this study, we retrospectively analysed the influence of disc degeneration, endplate changes, surgical technique, and patient’s clinical characteristics on recurrent lumbar disc herniation.
 
Methods: Patients who underwent primary single-level L4-L5 lumbar discectomy and who were reoperated on for recurrent L4-L5 disc herniation were retrospectively reviewed. All these operations were performed between August 2004 and September 2009 at the Neurosurgery Department of Ataturk Education and Research Hospital in Ankara, Turkey.
 
Results: During the study period, 126 patients were reviewed, with 101 patients underwent primary single-level L4-L5 lumbar discectomy and 25 patients were reoperated on for recurrent L4-L5 disc herniation. Preoperative higher intervertebral disc height (P<0.001) and higher body mass index (P=0.042) might be risk factors for recurrence. Modic endplate changes were statistically significantly greater in the recurrent group than in the non-recurrent group (P=0.032).
 
Conclusion: Our study suggests that patients who had recurrent lumbar disc herniation had preoperative higher disc height and higher body mass index. Modic endplate changes had a higher tendency for recurrence of lumbar disc herniation. Well-planned and well-conducted large-scale prospective cohort studies are needed to confirm this and enable convenient treatment modalities to prevent recurrent disc pathology.
 
 
New knowledge added by this study
  • Preoperative higher disc height, higher body mass index, and greater Modic endplate changes are important factors in recurrent lumbar disc herniation.
Implications for clinical practice or policy
  • This study revealed that patients who had lumbar disc herniation with preoperative higher disc height and Modic changes have a higher tendency to recurrence of lumbar disc herniation.
  • It is important to bear these factors in mind preoperatively and ensure discussion of expectations of surgery with the patient.
 
 
Introduction
Single-level lumbar discectomy is a very common surgical procedure and has been proven to be beneficial for patients with lumbar disc herniation (LDH). Recurrent lumbar disc herniation (rLDH) is defined as disc herniation at the same level, regardless of ipsilateral or contralateral herniation, in a patient who has experienced a pain-free interval of at least 6 months after surgery.1 2 The true incidence of same-level rLDH after lumbar discectomy is unclear. The recurrence rate of LDH has been reported to be 5% to 15%.1 2 3 4 5 There have been many studies designed to determine the recurrence of LDH, and various risk factors suggested including disc degeneration, trauma, age, smoking, gender, and obesity.1 3 6 Radiologically identifiable factors, such as disc degeneration, disc height, and sagittal range of motion have been shown to be related to spinal instability and consequently to rLDH.7 8 9 In this retrospective study, we analysed the influence of disc degeneration, endplate changes, surgical technique, and patient’s clinical characteristics on rLDH.
 
Methods
We examined factors that could influence the recurrence of LDH, especially in those with the highest recurrence rate, and to minimise the biomechanical changes at every level. We retrospectively reviewed the medical records of patients with L4-L5 LDH who underwent lumbar discectomy between August 2004 and September 2009 at the Neurosurgery Department of Ataturk Education and Research Hospital in Ankara, Turkey. This hospital is a tertiary referral hospital and a centre for education and scientific research. This study was approved by the Ethics Committee of Ankara Ataturk Education and Research Hospital, Turkey. The principles outlined in the Declaration of Helsinki have also been followed.
 
Patients were excluded if they had any of the following: prior lumbar surgery at another institution, segmental instability, vertebral fractures and spinal infections, other types of degenerative disc disease, tumours, pregnancy, and age over 75 years. Patients were included if they had radicular pain for at least 3 months that was refractory to 6 weeks of conservative treatment with or without neurological deficit, numbness in the lumbar spine, buttock, and/or lower extremity, age between 21 and 75 years, and magnetic resonance imaging (MRI) and/or computed tomography demonstrating anatomical unilateral LDH correlating with symptoms. In the rLDH group, patients were additionally required to have had a pain-free interval of at least 6 months following the first surgery. We compared the patients’ demographic and clinical characteristics (age, sex, body mass index [BMI], diabetes mellitus, smoking, herniation type), preoperative radiological parameters (Pfirrmann disc degeneration grade, Modic endplate changes, disc height), surgical technique (microdiscectomy, open discectomy), and duration of symptoms. All surgeries were performed by the same group of surgeons via microdiscectomy or open discectomy technique as previously reported and standardised by Williams10 and Mixter.11 The type of herniation was classified as protrusion, extrusion, or sequestration after retrospective review of surgical records and MRI studies. The staff in the radiological department were blinded to the outcome of the study. Lumbar MRI and simple radiographic examinations were performed in all patients before surgery. Intervertebral disc height measurements were calculated using the lateral radiographs. The degree of disc degeneration was assessed on T2-weighted sagittal MRI sequences. Disc degeneration was classified by our radiological department in a retrospective and blinded manner according to modified Pfirrmann criteria as shown in Table 1.12 Modic endplate changes were also classified with the help of our radiological department on T1/T2-weighted sagittal MRI sequences, again blinded to the outcome.13 14
 

Table 1. Pfirrmann disc degeneration grade12
 
Data analysis was performed using the Statistical Package for the Social Sciences (Windows version 11.5; SPSS Inc, Chicago [IL], United States). Test of normality was applied to parametric data. Parametric numerical data were compared with Student’s t test and non-parametric data with Mann-Whitney U test. Chi squared test was used with Fisher’s exact test to compare categorical and nominal variables as appropriate. Wilcoxon signed-rank test was used to compare differences between paired data. To identify the associations between recurrence and diabetes mellitus and smoking, logistic regression analysis was used. In detail, recurrence was included in the regression model as a dependent variable; smoking status and existence of diabetes mellitus were included as covariants and the enter mode was used. P value was used to determine whether the differences were statistically significant. A P value of <0.05 was considered statistically significant.
 
Results
A retrospective analysis of 600 patients who underwent surgery between August 2004 and September 2009 for only a single-level LDH was performed. The level of disc herniation was L1-L2 in four (0.7%), L2-L3 in 17 (2.8%), L3-L4 in 39 (6.5%), L4-L5 in 289 (48.2%), and L5-S1 in 251 (41.8%) patients. Of the 600 patients, 44 had rLDH; their respective distributions of disc levels were 0, 1, 3, 25, and 15. The total recurrence rate was 7.3%. Recurrence rate for L4-L5 level was the highest at 8.6%. The mean follow-up time of all patients was 323 days. The mean symptom duration was 78 days for the non-recurrent group and 77 days for the recurrent group. Patients in the recurrent group were pain-free for at least 6 months after the first operation with a median of 240 days (range, 188-1260 days).
 
After applying the exclusion/inclusion criteria, we retrospectively analysed 126 patients who underwent primary single-level L4-L5 lumbar discectomy and who were reoperated on for rLDH. The patients were divided into recurrent (n=25) and non-recurrent (n=101) group (Fig).
 

Figure. Flowchart of the study
 
Univariate analysis for demographics, and clinical and radiological characteristics of the recurrent and non-recurrent groups is shown in Table 2. There were no significant differences in the age, sex, type of disc herniation, type of surgery, and duration of symptoms between the two groups. Of the patients, 13 (52.0%) in the recurrent group and 42 (41.6%) in the non-recurrent group were smokers. In comparison with non-smokers, smokers had a 50% higher recurrence rate (odds ratio [OR]=1.52; 95% confidence interval [CI], 0.63-3.66). Five (20.0%) patients in the recurrent group and 10 (9.9%) in the non-recurrent group had diabetes mellitus. Patients with diabetes mellitus had twice the recurrence rate of those without (OR=2.27; 95% CI, 0.70-7.38). Preoperative mean intervertebral disc heights were significantly different between the recurrent (19.1 mm) and non-recurrent (15.0 mm) groups (P<0.001). A higher preoperative intervertebral disc space might be a risk factor for recurrence. A higher BMI was a statistically significant factor in the recurrent group (P=0.042). Modic endplate changes were statistically higher in the recurrent group than in the non-recurrent group (P=0.032). In the non-recurrent group, 13 (12.9%) patients showed grade II, 51 (50.5%) showed grade III, 24 (23.8%) showed grade IVA, and 13 (12.9%) showed grade IVB Pfirrmann disc degeneration. Although Pfirrmann disc degeneration was not statistically significant between the two groups (P=0.079), it might still be a moderate marker for a potential risk of recurrence.
 

Table 2. Univariate analysis of demographics, and clinical and radiological characteristics in the non-recurrent group and the recurrent group before the first surgery
 
The comparative analysis of preoperative clinical and radiological characteristics of the recurrent group is shown in Table 3. Before the first surgery, one (4%) patient showed grade II, 10 (40%) showed grade III, eight (32%) showed grade IVA, and six (24%) showed grade IVB Pfirrmann disc degeneration. In one patient, grade II Pfirrmann degeneration progressed to IVA before the second surgery. Six of 10 patients with grade III changed to IVB, three changed to IVA, and one remained unchanged with a Pfirrmann degeneration grade III after recurrence.
 

Table 3. Comparison of preoperative clinical and radiological characteristics of the recurrent patients (n=25)
 
These results led us to consider the relationship between grade of degenerated disc and herniation type. Herniation type was compared with Pfirrmann disc degeneration degree and Modic endplate changes. Patients with extrusion-sequestration herniation had a statistically significant higher Pfirrmann disc degeneration in contrast to patients with protrusions (P=0.016). Nonetheless, there was no correlation between Modic changes and herniation type (P=0.279).
 
Discussion
Degenerative disc disease remains a poorly understood phenomenon because of the lack of precise definitions for healthy and degenerated discs. Decreased nutrition is the final common pathway for degenerative disc disease and the status of the endplate plays a crucial role in controlling the extent of diffusion and is the only source of nutrition.15 A recurrence rate of 5% to 15% for LDH has been reported.1 2 3 4 5 Differentiation of recurrent disc herniation from scar formation will allow for improved treatment choices and selection of patients who may benefit from a second surgery. Gadolinium-enhanced MRI is thought to be the best modality to differentiate between these two diagnoses. There is much debate about the risk factors for rLDH and it is very difficult to define them because many clinical and complicated biomechanical parameters are involved.
 
In this study, we analysed the influence of disc degeneration, endplate changes, surgical technique, and patient’s clinical characteristics (age, gender, BMI, symptom duration, herniation type, smoking status, and diabetes). Kim et al6 reported old age, high BMI, protrusion type of disc herniation, and positive Modic changes as risk factors after percutaneous endoscopic discectomy. Swartz and Trost,2 however, found that age, gender, smoking status, level of herniation, and duration of symptoms were not associated with rLDH. We showed that disc height, BMI, and Modic endplate changes were significantly correlated with a higher incidence of rLDH. Although diabetes and smoking were not statistically significant in our study, patients with diabetes had twice the recurrence rate of those without. Furthermore, patients who were a smoker had a 50% higher recurrence rate in contrast to non-smokers. The exact mechanism by which smoking contributes to disc degeneration is incompletely understood, but may be related to disc annulus nutrition and oxygenation, as well as increases in intradiscal pressure due to excessive coughing. Vascular insufficiency as a result of atheromas should also be considered.16 17 18 19 20 Analogous with our results, these presumptions may account for smoking as a cause of rLDH. In contrast with these findings, however, some studies found no relationship between smoking and rLDH.21 22 23
 
Clinical studies of disc height and recurrence have shown that degenerative segments with preserved disc height have a latent instability compared with segments with collapsed discs.8 Other studies have shown that the restabilisation stage begins when disc height is reduced by 50%.7 Similar to these studies, our study showed that preoperative higher intervertebral disc space measurements were significantly more important in recurrence (P<0.001).
 
Pfirrmann disc degeneration grade was not statistically significant in the recurrent group in contrast to non-recurrent group (P=0.079), but patients with extrusion and sequestration had a statistically significant higher Pfirrmann disc degeneration than patients with protrusions (P=0.016). These findings provide evidence that the healing processes that occur in the outer lamellas after annular injury may not be sufficient for effective reconstitution of the external annulus in degenerated discs.24 25 Increases in disc degeneration cause larger volumes of herniation type. Studies of Modic endplate changes after lumbar discectomy have shown incremental changes in disc degeneration grade.18 26 It is accepted that Modic type 1 changes are dynamically unstable and inflammatory lesions, whereas type 2 lesions are much more stable and unchangeable.26 Therefore, posterior lumbar interbody fusion combined with pedicle screw fixation is suggested for degenerative lumbar disc disease with Modic changes.27 Another study suggested treatment of Modic type 1 and 2 lesions with degenerative disc disease with posterior dynamic stabilisation.28 Our study showed that Modic changes were statistically higher in the recurrent group than the non-recurrent group (P=0.032). These findings suggest that patients with LDH and higher preoperative disc heights and Modic changes have a higher risk and tendency to recurrence of LDH. Although our study does not include different modalities to include lumbar disc diseases with Modic changes, the results might suggest a supplemental approach such as posterior stabilisation and fusion, or newly proposed treatment options with dynamic posterior stabilisation.
 
This study has several limitations. It would have a greater impact if we had included a larger subgroup population, especially for rLDH. To investigate factors that influence recurrence of L4-L5 disc herniation, however, several clinical and radiological parameters such as canal diameter, facet angle, annular defect size, location of the herniation type etc would need to be considered. The aim of this study was to focus on the effect of disc height, endplate changes, and disc degeneration in rLDH at L4-L5 level. As only univariate analyses were performed, we have no adjustment for potential confounding, hence the independent effects of the risk factors could not be documented. A prospective study would obtain more precise results, especially due to standardised sampling and classification of data.
 
Conclusion
This study suggests that patients who had LDH with higher preoperative disc height, higher BMI, and Modic endplate changes have a higher tendency for rLDH. Well-planned and well-conducted large-scale prospective cohort studies are essential to firmly evaluate and determine factors involved in rLDH.
 
Acknowledgement
We thank Ms Fatma Kubra Erbay from Department of Micro and Nanotechnology, TOBB University of Economics and Technology, Ankara, Turkey for her great effort in revising the statistical results of this study.
 
Declaration
All authors have disclosed no conflicts of interest.
 
References
1. Suk KS, Lee HM, Moon SH, Kimm NH. Recurrent lumbar disc herniation: results of operative management. Spine (Phila Pa 1976) 2001;26:672-6. Crossref
2. Swartz KR, Trost GR. Recurrent lumbar disc herniation. Neurosurg Focus 2003;15:E10. Crossref
3. Connolly ES. Surgery for recurrent lumbar disc herniation. Clin Neurosurg 1992;39:211-6.
4. Fandiño J, Botana C, Viladrich A, Gomez-Bueno J. Reoperation after lumbar disc surgery: results in 130 cases. Acta Neurochir (Wien) 1993;122:102-4. Crossref
5. Mobbs RJ, Newcombe RL, Chandran KN. Lumbar discectomy and the diabetic patient: incidence and outcome. J Clin Neurosci 2001;8:10-3. Crossref
6. Kim JM, Lee SH, Ahn Y, Yoon DH, Lee CD, Lim ST. Recurrence after successful percutaneous endoscopic lumbar discectomy. Minim Invasive Neurosurg 2007;50:82-5. Crossref
7. Axelsson P, Karlsson BS. Intervertebral mobility in the progressive degenerative process. A radiostereometric analysis. Eur Spine J 2004;13:567-72. Crossref
8. Hasegawa K, Kitahara K, Hara T, Takano K, Shimoda H, Homma T. Evaluation of lumbar segmental instability in degenerative diseases by using a new intraoperative measurement system. J Neurosurg Spine 2008;8:255-62. Crossref
9. Zhao F, Pollintine P, Hole BD, Dolan P, Adams MA. Discogenic origins of spinal instability. Spine (Phila Pa 1976) 2005;30:2621-30. Crossref
10. Williams RW. Microlumbar discectomy: a conservative surgical approach to the virgin herniated lumbar disc. Spine (Phila Pa 1976) 1978;3:175-82. Crossref
11. Mixter WJ. Pitfalls in the surgery of the ruptured intervertebral disk. J Fla Med Assoc 1952;39:159-67.
12. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001;26:1873-8. Crossref
13. Modic MT, Masaryk TJ, Ross JS, Carter JR. Imaging of degenerative disk disease. Radiology 1998;168:177-86. Crossref
14. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 1988;166(1 Pt 1):193-9. Crossref
15. Rajasekaran S, Venkatadass K, Naresh Babu J, Ganesh K, Shetty AP. Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 2008;17:626-43. Crossref
16. Akmal M, Kesani A, Anand B, Singh A, Wiseman M, Goodship A. Effect of nicotine on spinal disc cells: a cellular mechanism for disc degeneration. Spine (Phila Pa 1976) 2004;29:568-75. Crossref
17. Frymoyer JW, Pope MH, Costanza MC, Rosen JC, Goggin JE, Wilder DG. Epidemiologic studies of low-back pain. Spine (Phila Pa 1976) 1980;5:419-23. Crossref
18. Iwahashi M, Matsuzaki H, Tokuhashi Y, Wakabayashi K, Uematsu Y. Mechanism of intervertebral disc degeneration caused by nicotine in rabbits to explicate intervertebral disc disorders caused by smoking. Spine (Phila Pa 1976) 2002;27:1396-401. Crossref
19. Nemoto Y, Matsuzaki H, Tokuhasi Y, et al. Histological changes in intervertebral discs after smoking cessation: experimental study using a rat passive smoking model. J Orthop Sci 2006;11:191-7. Crossref
20. Stairmand JW, Holm S, Urban JP. Factors influencing oxygen concentration gradients in the intervertebral disc. A theoretical analysis. Spine (Phila Pa 1976) 1991;16:444-9. Crossref
21. Kara B, Tulum Z, Acar U. Functional results and the risk factors of reoperations after lumbar disc surgery. Eur Spine J 2005;14:43-8. Crossref
22. Meredith DS, Huang RC, Nguyen J, Lyman S. Obesity increases the risk of recurrent herniated nucleus pulposus after lumbar microdiscectomy. Spine J 2010;10:575-80. Crossref
23. Palma L, Carangelo B, Muzii VF, Mariottini A, Zalaffi A, Capitani S. Microsurgery for recurrent lumbar disk herniation at the same level and side: do patients fare worse? Experience with 95 consecutive cases. Surg Neurol 2008;70:619-21. Crossref
24. Hampton D, Laros G, McCarron R, Franks D. Healing potential of the anulus fibrosus. Spine (Phila Pa 1976) 1989;14:398-401. Crossref
25. Osti OL, Vernon-Roberts B, Fraser RD. 1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model. Spine (Phila Pa 1976) 1990;15:762-7. Crossref
26. Rahme R, Moussa R, Bou-Nassif R, et al. What happens to Modic changes following lumbar discectomy? Analysis of a cohort of 41 patients with a 3- to 5-year follow-up period. J Neurosurg Spine 2010;13:562-7. Crossref
27. Kwon YM, Chin DK, Jin BH, Kim KS, Cho YE, Kuh SU. Long term efficacy of posterior lumbar interbody fusion with standard cages alone in lumbar disc diseases combined with modic changes. J Korean Neurosurg Soc 2009;46:322-7. Crossref
28. Öktenoglu T, Ozer AF, Sasani M, et al. Posterior dynamic stabilization in the treatment of lumbar degenerative disc disease: 2-year follow-up. Minim Invasive Neurosurg 2010;53:112-6. Crossref

Neoadjuvant chemotherapy increases rates of breast-conserving surgery in early operable breast cancer

Hong Kong Med J 2017 Jun;23(3):251–7 | Epub 9 May 2017
DOI: 10.12809/hkmj164972
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Neoadjuvant chemotherapy increases rates of breast-conserving surgery in early operable breast cancer
Vivian CM Man, MB, BS, MRCS1; Polly SY Cheung, FCSHK, FHKAM (Surgery)2
1 Department of Surgery, Queen Mary Hospital, Pokfulam, Hong Kong
2 Breast Care Centre, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
 
Corresponding author: Dr Polly SY Cheung (pollyc@pca.hk)
 
 Full paper in PDF
 
Abstract
Introduction: Neoadjuvant chemotherapy is commonly used in stage III breast cancer for disease down-staging. Its use has now been extended to early breast cancer to increase the rate of breast-conserving surgery. This study aimed to evaluate the effectiveness of neoadjuvant chemotherapy in early operable cancers.
 
Methods: A retrospective study was carried out at the Hong Kong Sanatorium & Hospital of 102 patients with stage I to III primary breast cancer. All patients who underwent neoadjuvant chemotherapy followed by definitive breast surgery between January 2004 and July 2013 were included. Their pathological complete response and rate of breast-conserving surgery were studied. Data were compared using Chi squared test and Student’s t test.
 
Results: After neoadjuvant chemotherapy, 23% of patients achieved a pathological complete response, of whom 80% had human epidermal growth factor receptor 2 (HER2)–positive disease or triple-negative disease. Hormonal receptor negativity was associated with a higher pathological complete response rate (P<0.05) that was in turn associated with a higher likelihood of breast-conserving surgery (P=0.028). Patients with stage II disease were more likely to convert from mastectomy to breast-conserving surgery following neoadjuvant chemotherapy.
 
Conclusions: Neoadjuvant chemotherapy is a useful treatment to downsize tumour in early breast cancer, thereby increasing the rate of breast-conserving surgery. It is especially effective in patients with HER2-positive/oestrogen receptor–negative disease or triple-negative disease.
 
 
New knowledge added by this study
  • Neoadjuvant chemotherapy for breast cancer can downsize the tumour with a consequent higher rate of breast-conserving surgery, especially in patients with human epidermal growth factor receptor 2–positive/oestrogen receptor–negative disease or triple-negative disease.
Implications for clinical practice or policy
  • Neoadjuvant chemotherapy is a useful alternative in early breast cancer for women considering breast-conserving surgery.
 
 
Introduction
Breast cancer is the leading cancer affecting women in Hong Kong, followed by colorectal and lung malignancy.1 The number of new breast cancer cases in Hong Kong has tripled since the 1990s and the lifetime breast cancer risk in women is currently one in 17.1 Among the 12 345 patients studied in the cohort of the Hong Kong Breast Cancer Registry from 2008 to February 2014, 55% were diagnosed with stage II disease or above and 5% of the cohort received neoadjuvant chemotherapy.1 This cohort of patients is estimated to cover approximately 40% of patients reported by the Hong Kong Cancer Registry of the Hospital Authority.
 
Neoadjuvant chemotherapy has played an increasing role in the management of breast cancer over the last few decades. It was considered at least as effective as postoperative chemotherapy in terms of disease-free survival (DFS) and overall survival (OS) in the National Surgical Adjuvant Breast and Bowel Project B-18 trial.2 Neoadjuvant chemotherapy allows disease down-staging, thus increasing the probability of successful breast-conserving therapy.3 4 In addition, tumour response can be monitored ‘in vivo’ and chemotherapeutic regimens modified accordingly. Studies have also suggested its role in disease prognostication, especially the presence of pathological complete response in highly proliferative tumours.3
 
The aims of this study were to identify possible tumour characteristics that may benefit from neoadjuvant chemotherapy and to evaluate the effectiveness of neoadjuvant chemotherapy in increasing the rates of breast-conserving surgery in early operable breast cancer.
 
Methods
This was a retrospective study carried out at the Hong Kong Sanatorium & Hospital and approved by the hospital research committee in September 2013; the requirement of patient informed consent was waived because of its retrospective nature. This study was done in accordance with the principles outlined in the Declaration of Helsinki. All patients with breast cancer who underwent neoadjuvant chemotherapy followed by definitive breast surgery from January 2004 to July 2013 were recruited. The choice of definitive breast surgery, either breast-conserving surgery or mastectomy, was determined by an experienced breast surgeon (CSY) and based on the oncological and cosmetic outcome of each patient. Patients who presented with distant metastases and those who underwent neoadjuvant hormonal therapy were excluded. Those who had stage IV disease were also excluded.
 
Patient records were retrieved from the breast cancer database at the Hong Kong Sanatorium & Hospital and out-patient clinic of one of the authors (CSY) by an independent research assistant who was blinded to the study hypothesis and outcome. All recruited patients had their surgery performed by CSY, who is one of the breast surgery specialists at the hospital. Patients were followed up perioperatively in the out-patient clinic of CSY. Patient demographics, pre-chemotherapy and post-chemotherapy disease staging, tumour characteristics, positron emission tomography–computed tomography findings, and prescribed chemotherapeutic agents were evaluated.
 
Effectiveness of neoadjuvant chemotherapy was assessed in two ways: presence of pathological complete response and the feasibility of breast-conserving surgery after chemotherapy. Intrinsic tumour characteristics that influenced treatment response were analysed. Tumour size, nodal status, tumour grade, hormonal receptor status, human epidermal growth factor receptor 2 (HER2) receptor status, Ki67 level, and chemotherapeutic agents used were the independent variables in this study. Statistical analysis was performed with SPSS (Windows version 20.0; IBM Corp, Armonk [NY], United States) and a P value of <0.05 was considered statistically significant. Univariate analysis was performed with Student’s t test and Chi squared test where appropriate. Definitions of various terms used in this study are listed in the Appendix.
 

Appendix. Definitions
 
Results
Patient’s characteristics
From January 2004 to July 2013, 2156 patients underwent breast cancer surgery at Hong Kong Sanatorium & Hospital by an experienced breast surgeon (CSY). Stage II or III disease was diagnosed in 48% and 105 (5%) of all patients underwent neoadjuvant chemotherapy. Three patients were excluded due to significant missing data. A total of 102 were ultimately recruited.
 
Characteristics of patients are summarised in Table 1. Almost all recruited patients had stage II or III disease before commencement of neoadjuvant chemotherapy. Invasive ductal carcinoma constituted more than 90% of all diagnosed breast cancers. One quarter of the recruited patients had triple-negative disease and one third had HER2-positive disease. In our study, 48 patients received sequential anthracycline-taxane-based chemotherapy and 52 received taxane-based chemotherapy only. One patient received four cycles of anthracycline-based chemotherapy only and another patient received gemcitabine and vinorelbine. There were 35 patients prescribed herceptin as part of their neoadjuvant chemotherapy.
 

Table 1. Patient characteristics
 
Tumour size
After commencement of neoadjuvant chemotherapy, the mean tumour size reduced by more than half, from 4 cm to <2 cm. The HER2-positive group showed a relatively greater tumour size reduction to almost 75% (Fig). On the contrary, the mean tumour size in luminal A breast cancers remained relatively static despite neoadjuvant chemotherapy.
 

Figure. Changes in mean tumour size after neoadjuvant chemotherapy
 
Nodal status
More than 80% of the studied population presented with N1 disease or above. After neoadjuvant chemotherapy, the proportion of patients with N0 disease increased from 15% to 43%. Just over half (51%) of the studied group achieved a reduction in nodal staging following neoadjuvant chemotherapy (Table 2). Similarly, patients with HER2-positive disease or triple-negative disease showed a more significant nodal down-staging after chemotherapy (P=0.007).
 

Table 2. Change in nodal status after neoadjuvant chemotherapy for different biological subtypes
 
Pathological complete response
Effectiveness of neoadjuvant chemotherapy was determined by the presence of pathological complete response. Pathological complete response was achieved by 23% (n=23) of patients and 60% had a partial tumour response. Among these 23 patients, 18 (78%) had triple-negative disease or HER2-positive disease; oestrogen receptor (ER) status was negative in 14 patients and progesterone receptor (PR) status was negative in 17 patients. Four patients with triple-negative disease or HER2-positive disease had nodal down-staging from N2 or N3. Breast cancers with negative ER status (P=0.039) or negative PR status (P=0.029) had a higher chance of pathological complete response in univariate analysis (Table 3). Other factors including the Ki67 value, tumour grade, and the prescribed chemotherapeutic regimen did not appear to influence the rate of pathological complete response.
 

Table 3. Univariate analysis for pathological complete/partial response
 
Does pathological complete response predict likelihood of breast-conserving surgery?
Pathological complete response was achieved by 23 patients, of whom 15 (65%) underwent breast-conserving surgery; whereas only 39% of those with partial or no response had breast conservation. Univariate analysis revealed that patients who had pathological complete response following neoadjuvant chemotherapy had a higher chance of successful breast-conserving surgery (P=0.028). Mastectomy was required in eight patients despite a pathological complete response due to pre-chemotherapy large tumour size, extensive carcinoma in situ, or central location of the tumour.
 
Among those with pathological complete response, 11 (79%) of 14 stage II patients and four (50%) of eight stage III patients eventually had breast-conserving surgery. Patients with stage II disease showed a trend for more breast-conserving surgery after neoadjuvant therapy although this was not statistically significant (P=0.15).
 
Feasibility of breast-conserving surgery
The change of treatment plan after neoadjuvant chemotherapy is shown in Table 4. Before the commencement of neoadjuvant chemotherapy, one quarter of patients (n=26) were scheduled for breast-conserving surgery and three quarters for mastectomy (n=72). After chemotherapy, one third of those scheduled for mastectomy (24 patients) changed to breast-conserving surgery. The number of breast-conserving surgeries increased from 26 to 45, with an increase of 19% of all patients.
 

Table 4. Change of treatment plan after neoadjuvant chemotherapy
 
After neoadjuvant chemotherapy, 24 patients with planned mastectomy underwent breast-conserving surgery and 48 continued with mastectomy. On the other hand, five patients with planned breast-conserving surgery underwent mastectomy after neoadjuvant chemotherapy as a result of disease progression or patient’s preference (Table 4). Among the 24 patients with successful conversion from mastectomy to breast-conserving surgery, 21 had tumour size of <5 cm and 18 had stage II disease. Pre-chemotherapy disease staging (P=0.001) and tumour size (P=0.005) were important factors that determined successful conversion to breast-conserving treatment in univariate analysis (Table 5). The breast-conserving surgery to mastectomy ratio in patients with stage II disease was 32:14 patients, ie 2.3 to 1. On the contrary, 13 patients with stage III disease underwent breast-conserving surgery and 38 underwent mastectomy, ie a ratio of 1:3 for stage III disease. Among those who underwent breast-conserving surgery, 93% had tumour size of <5 cm. The corresponding proportion in those who underwent mastectomy was 60%. Tumours with size of <5 cm were more likely to be amenable to successful breast-conserving surgery. Other factors including the Ki67 index, tumour grade, and the prescribed chemotherapeutic regimen did not appear to influence the rate of breast-conserving surgery.
 

Table 5. Univariate analysis for successful conversion to breast-conserving surgery
 
Discussion
Neoadjuvant chemotherapy was introduced in the 1980s as standard treatment for locally advanced breast cancers, defined as stage III disease (and a subset of stage IIB disease).5 6 In the last decade, the use of neoadjuvant chemotherapy has been extended to patients with early operable primary breast cancers with promising results. The aim of this study was to evaluate the response of early operable breast cancers to neoadjuvant chemotherapy and the predictors of good responders.
 
Efficacy of neoadjuvant chemotherapy and adjuvant chemotherapy has been carefully evaluated in a number of publications. A prospective randomised trial of the Austrian Breast and Colorectal Cancer Study Group (ABCSG-07) recruited 423 breast cancer patients with stage II to III disease and randomised them to neoadjuvant CMF (cyclophosphamide, methotrexate, fluorouracil) or adjuvant CMF.7 The adjuvant CMF group showed superior results in recurrence-free survival, although the OS was similar. Nonetheless, this ‘old’ chemotherapeutic regimen has now mostly been replaced by anthracycline-taxane-based chemotherapy.
 
With the emergence of newer chemotherapeutic agents, the National Surgical Adjuvant Breast and Bowel Project B-18 published the largest prospective study with the use of AC (doxorubicin and cyclophosphamide).2 Neoadjuvant chemotherapy was at least as effective as adjuvant chemotherapy after a 9-year follow-up. A similar study by the European Organization for Research and Treatment of Cancer published an update after 10 years of follow-up.8 There was no difference in OS or relapses between patients with preoperative and postoperative chemotherapy. Those with neoadjuvant chemotherapy had more breast-conserving treatment. Further subgroup analysis showed a comparable loco-regional recurrence rate between patients initially allocated to receive breast-conserving treatment and those who did after tumour downsizing.8
 
Meta-analysis of 14 randomised controlled trials that included patients with mostly stage II or III disease showed similar results.9 The loco-regional recurrence rate was also comparable between the two groups. There was a statistically significant decrease in mastectomy rate that favoured neoadjuvant chemotherapy.
 
In our study, patients with stage II to III disease were further stratified in the subgroup analysis. Stage II disease was considered early operable breast cancer while patients with stage III disease represented those with locally advanced disease. This stratification was in line with the MD Anderson Cancer Centre Classification of locally advanced disease.5 Patients with early operable breast cancer showed comparatively greater benefits following neoadjuvant chemotherapy in terms of the rate of pathological complete response and breast-conserving surgery.
 
Pathological complete response has been one of the commonly used study endpoints in publications. It has been suggested to correlate with a better long-term outcome. Meta-analysis by Mieog et al9 found improved OS in patients with pathological complete response. The definition of pathological complete response varies from institution to institution, however. In our study, we adopted the definition recognised by the MD Anderson Cancer Centre and in the ABCSG study,10 in which there should be no invasive residual disease in breast or nodes although non-invasive breast residuals are allowed. Studies have shown no difference in DFS or OS between patients with ypT0ypN0 and ypTisypN0 tumours.3 11
 
Of note, the rate of pathological complete response appears to be different among various intrinsic types of breast cancer.12 In 2005, Rouzier et al13 stratified breast cancer patients into four molecular classes using the genetic profile from a fine-needle aspiration specimen. Patients with basal-like and c-erbB2+ breast cancers had the highest rate of pathological complete response. Age younger than 50 years and ER-negative status were independent variables with a higher likelihood of pathological complete response. In our study, core biopsies with immunohistochemical staining and proliferation index were used to classify patients into luminal A, luminal B, triple-negative, or HER2-positive subgroups and also showed consistent findings.
 
Carey et al14 described the phenomenon of triple-negative paradox in 2007. Basal-like and HER2+/ER- subtypes were more chemosensitive than their luminal counterparts. They were more likely to have pathological complete response but those with residual disease also had a higher likelihood of relapse and worse outcome. The study by the German Breast Group in 2012 highlighted the impact of pathological complete response on prognosis in different intrinsic subtypes of breast cancer.10 Patients with ypT0N0 tumours had the best DFS (P<0.001) and a trend of better OS. More importantly, pathological complete response was predictive of DFS and OS in highly aggressive tumours only such as those with negative ER or PR status. Patients with HER2-positive or triple-negative tumours did better if they achieved pathological complete response after neoadjuvant chemotherapy. Residual disease in breast and nodes, on the contrary, was associated with worse distant DFS.15
 
Last but not the least, recent publications have described possible changes in receptor status before and after neoadjuvant chemotherapy although the significance remains controversial.16 In our study, change in ER status was evident in 10% of the study group and that of HER2 in 50%.
 
The current study has several limitations. First, this was a retrospective study and the database in the earlier period was incomplete with missing information. There were three patients with significant missing information who were excluded from this small study. Second, there may be selection bias as patients chosen for neoadjuvant chemotherapy were subject to surgeon assessment and patient preference. This study represents the experience of neoadjuvant chemotherapy by one experienced breast surgery specialist in one private hospital in Hong Kong. As such, the findings may not apply to other breast cancer patients in public hospitals or in other countries. Third, long-term survival data are not included in the present study, and significance of pathological complete response is not known. Lastly, the number of cases in this study was small, therefore further subgroup analysis in patients with pathological complete response or successful conversion to breast-conserving surgery was not possible. It does not allow further multivariate analysis for controlling potential confounding factors. Future study in this area with a larger sample size may be useful to guide patient selection for systemic treatment of breast cancer in a neoadjuvant setting.
 
Conclusions
Neoadjuvant chemotherapy has expanded indications from treatment of locally advanced breast cancers to render it operable, to downsizing early operable breast cancers enabling breast-conserving surgery. The current study has shown an increased rate of breast-conserving surgery with neoadjuvant chemotherapy, especially in the early operable group. Negative hormonal status was an independent variable that determined pathological complete response.
 
Declaration
All authors have disclosed no conflicts of interest.
 
References
1. Hong Kong Breast Cancer Registry Report No. 8. Hong Kong Breast Cancer Foundation. Available from: http://www.hkbcf.org. Accessed Feb 2016.
2. Fisher B, Brown A, Mamounas E, et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol 1997;15:2483-93. Crossref
3. Gampenrieder S, Rinnerthaler G, Greil R. Neoadjuvant chemotherapy and targeted therapy in breast cancer: past, present, and future. J Oncol 2013;2013:732047. Crossref
4. Thompson AM, Moulder-Thompson SL. Neoadjuvant treatment of breast cancer. Ann Oncol 2012;23 Suppl 10:x231-6. Crossref
5. Giordano SH. Update on locally advanced breast cancer. Oncologist 2003;8:521-30. Crossref
6. Alassas M, Chu Q, Burton G, Ampil F, Mizell J, Li BD. Neoadjuvant chemotherapy in stage III breast cancer. Am Surg 2005;71:487-92.
7. Taucher S, Steger GG, Jakesz R, et al. The potential risk of neoadjuvant chemotherapy in breast cancer patients—results from a prospective randomized trial of the Austrian Breast and Colorectal Cancer Study Group (ABCSG-07). Breast Cancer Res Treat 2008;112:309-16. Crossref
8. van Nes JG, Putter H, Julien JP, et al. Preoperative chemotherapy is safe in early breast cancer, even after 10 years of follow-up; clinical and translational results from the EORTC trial 10902. Breast Cancer Res Treat 2009;115:101-13. Crossref
9. Mieog JS, van der Hage JA, van de Velde CJ. Neoadjuvant chemotherapy for operable breast cancer. Br J Surg 2007;94:1189-200. Crossref
10. von Minckwitz G, Untch M, Blohmer JU, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012;30:1796-804. Crossref
11. Mazouni C, Peintinger F, Wan-Kau S, et al. Residual ductal carcinoma in situ in patients with complete eradication of invasive breast cancer after neoadjuvant chemotherapy does not adversely affect patient outcome. J Clin Oncol 2007;25:2650-5. Crossref
12. Bhargava R, Beriwai S, Dabbs DJ, et al. Immunohistochemical surrogate markers of breast cancer molecular classes predicts response to neoadjuvant chemotherapy: a single institutional experience with 359 cases. Cancer 2010;116:1431-9. Crossref
13. Rouzier R, Perou CM, Symmans WF, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 2005;11:5678-85. Crossref
14. Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007;13:2329-34. Crossref
15. Corben AD, Abi-Raad R, Popa I, et al. Pathologic response and long-term follow-up in breast cancer patients treated with neoadjuvant chemotherapy: a comparison between classifications and their practical application. Arch Pathol Lab Med 2013;137:1074-82. Crossref
16. Pedrini JL, Francalacci Savaris R, Casales Schorr M, Cambruzi E, Grudzinski M, Zettler CG. The effect of neoadjuvant chemotherapy on hormone receptor status, HER2/neu and prolactin in breast cancer. Tumori 2011;97:704-10.

Comparison of a commercial interferon-gamma release assay and tuberculin skin test for the detection of latent tuberculosis infection in Hong Kong arthritis patients who are candidates for biologic agents

Hong Kong Med J 2017 Jun;23(3):246–50 | Epub 27 Jan 2017
DOI: 10.12809/hkmj164880
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
Comparison of a commercial interferon-gamma release assay and tuberculin skin test for the detection of latent tuberculosis infection in Hong Kong arthritis patients who are candidates for biologic agents
H So, MSc, FHKAM (Medicine); Carol SW Yuen, BNurs, MSc; Ronald ML Yip, FHKCP, FHKAM (Medicine)
Department of Medicine and Geriatrics, Kwong Wah Hospital, Yaumatei, Hong Kong
 
An earlier version of this paper was presented at the ASM of the Hong Kong Society of Rheumatology held in Hong Kong on 22 November 2015.
 
Corresponding author: Dr H So (h99097668@hotmail.com)
 
 Full paper in PDF
 
Abstract
Introduction: It is universally agreed that screening for latent tuberculosis infection prior to biologic therapy is necessary, especially in endemic areas such as Hong Kong. There are still, however, controversies regarding how best to accomplish this task. The tuberculin skin test has been the routine screening tool for latent tuberculosis infection in Hong Kong for the past decade although accuracy is far from perfect, especially in patients who have been vaccinated with Bacillus Calmette–Guérin, who are immunocompromised, or who have atypical mycobacterium infection. The new interferon-gamma release assays have been shown to improve specificity and probably sensitivity. This study aimed to evaluate agreement between the interferon-gamma release assay and the tuberculin skin test in the diagnosis of latent tuberculosis infection in patients with arthritic diseases scheduled to receive biologic agents.
 
Methods: We reviewed 38 patients with rheumatoid arthritis, psoriatic arthritis, or spondyloarthritis at a local hospital in Hong Kong from August 2013 to April 2014. They were all considered candidates for biologic agents. The patients underwent both the interferon-gamma release assay (ASACIR.TB; A.TB) and the tuberculin skin test simultaneously. Concurrent medications were documented. Patients who tested positive for either test (ie A.TB+ or TST+) were prescribed treatment for latent tuberculosis if they were to be given biologic agents. All patients were followed up regularly for 1 year and the development of active tuberculosis infection was evaluated.
 
Results: Based on an induration of 10 mm in diameter as the cut-off value, 13 (34.2%) of 38 patients had a positive tuberculin skin test. Of the 38 patients, 11 (28.9%) also had a positive interferon-gamma release assay. The agreement between interferon-gamma release assay and tuberculin skin test was 73.7% (kappa=0.39). Six patients were TST+/A.TB– and four were TST–/A.TB+. When positive tuberculin skin test was defined as an induration of 5-mm diameter, the agreement between the two tests improved with a kappa value of 0.47. In that case, half of the patients had a positive tuberculin skin test; among them, nine were TST+/A.TB–. Only one was TST–/A.TB+. Subgroup analysis showed that the agreement between both tests improved further (kappa=0.69) in patients not taking a concurrent systemic steroid. For patients prescribed systemic steroid, the agreement was only slight with a kappa value of 0.066. Finally, none of the 38 patients, of whom 32 had an exposure to biologic agents, developed active tuberculosis during the 1-year follow-up period.
 
Conclusion: In a tuberculosis-endemic population, although 10-mm diameter induration is the usual cut-off for a positive tuberculin skin test, the level of agreement between the interferon-gamma release assay and tuberculin skin test improved from fair to moderate when the cut-off was lowered to 5 mm. A dual testing strategy of tuberculin skin test and interferon-gamma release assays appeared to be effective and should be pursued especially in patients who are on systemic steroid therapy. Nonetheless, the issue of potential overtreatment is yet to be evaluated.
 
 
New knowledge added by this study
  • In Hong Kong, a tuberculosis-endemic area, the level of agreement between tuberculin skin test (TST) and interferon-gamma release assay (IGRA) for detecting latent tuberculosis infection was only fair in arthritis patients scheduled to receive biologic therapy.
  • Although 10 mm is the cut-off for positive TST according to the local guideline, the level of agreement between the two tests improved when a 5-mm cut-off was used.
Implications for clinical practice or policy
  • Dual testing strategy with TST and IGRA appeared to be effective and should be employed, especially in patients who are prescribed systemic steroid therapy.
 
 
Introduction
The advent of biologic agents has revolutionised the treatment of patients with rheumatoid arthritis (RA), psoriatic arthritis (PSA), and spondyloarthritis (SPA). The outcome is now greatly improved. This, however, comes at the price of a clear heightened risk of active tuberculosis (TB) as a progression of latent TB infection (LTBI).1 Therefore, it is universally agreed that screening for LTBI prior to biologic therapy is necessary, especially in endemic areas such as Hong Kong.2 Unfortunately, there remains controversy regarding how best to accomplish this task.
 
The tuberculin skin test (TST) has been the routine screening tool in Hong Kong for the past decade.3 Its accuracy, however, is far from perfect, especially in patients who have been vaccinated with Bacillus Calmette–Guérin (BCG), are immunocompromised, or have been infected with atypical mycobacterium.4 Recently, interferon-gamma release assays (IGRAs) that measure interferon-gamma secretion in response to Mycobacterium tuberculosis–specific antigens have become available to detect LTBI. They have been shown to offer improved specificity and probably sensitivity.5 6 Other shortcomings of the TST, such as the need for return visits and reader variability, are also overcome. One of the IGRAs, the ASACIR.TB (A.TB; Haikou VTI Biological Institute, Hainan, China), has shown encouraging results in a large-scale clinical trial conducted in China and might be more appropriate in Chinese populations.7
 
On the other hand, IGRAs are not flawless. The rate of indeterminate results has been reported to be as high as 40%.8 The immunocompromised state of arthritic patients will also induce a depressed response to a T-cell reaction leading to an inaccurate IGRA result. There are recent data to argue that an IGRA alone is insufficient to identify all patients at risk.9 10 Furthermore, various studies have suggested very different concordance figures between the IGRA and the TST, likely as a result of heterogeneity (eg differing background TB prevalence, variable immunosuppressive therapies, or underlying BCG status).11
 
This study aimed to evaluate the agreement between the IGRA and the TST in the diagnosis of LTBI in patients with arthritic diseases scheduled to receive biologic agents in Hong Kong.
 
Methods
Patients
We reviewed 38 patients with RA, PSA, or SPA at a local hospital in Hong Kong from August 2013 to April 2014. They were diagnosed according to the 2010 classification criteria for RA of the American College of Rheumatology/European League Against Rheumatism, the Classification Criteria for Psoriatic Arthritis, and the Assessment of SpondyloArthritis international Society classification criteria, respectively. Patients were included if they were considered candidates for biologic agents. Concurrent medications were documented. Candidates were excluded if they had active TB infection, a history of incomplete TB treatment, or no measured induration. Patients underwent both the IGRA and the TST simultaneously. Those who tested positive for either test and who were due to be prescribed biologic agents were given latent TB treatment with isoniazid or rifampicin for 9 months. All patients were followed up regularly for 1 year and the development of active TB infection was evaluated. This study conforms to the provisions of the Declaration of Helsinki and the guidelines of the local ethical committee. Informed consent was considered not necessary due to the retrospective nature of the study.
 
Tuberculin skin test
The TST was performed by rheumatologists. A 0.1 mL of 2-TU PPD (tuberculin units of purified protein derivative) was injected intradermally into the volar aspect of the forearm. The indurations were measured in millimetres after 48 hours of inoculation by rheumatologists who were blinded to the IGRA results. According to the local guideline, induration of ≥10 mm was considered a positive result of LTBI.3
 
Interferon-gamma release assay
We performed the A.TB IGRA test (Haikou VTI Biological Institute) in all study patients. This assay employs Haikou VTI’s patented technology (US patent number 7754219) that enables intracellular delivery of the full-length protein CFP-10 and the antigen ESAT-6 to stimulate antigen-specific T-cells through the major histocompatibility complex class 1 pathway.12 13 The assay was performed according to the user manual. In brief, negative control phosphate buffered saline (N), positive control concanavalin A (P), and the TB stimulators CFP-10 and ESAT-6 (T) were mixed with fresh heparinised whole blood and incubated for approximately 24 hours at 37.8°C. The plasma was collected and stored at 48°C for up to 2 weeks. The interferon-gamma level in the plasma was then determined by enzyme-linked immunosorbent assay. If N was <0.5 IU/mL and (T-N)/(P-N) ≥0.6, or if N was ≥0.5 IU/mL and (T-N)/(P-N) ≥0.85, the test was considered to be positive (A.TB+), otherwise the result was negative (A.TB–).
 
Statistical analysis
Descriptive statistics were presented as frequencies and means ± standard deviations as appropriate. The concordance between TST and IGRA was evaluated by the Cohen’s weighted k statistic. A kappa value of >0.6 represents substantial agreement, 0.41 to 0.60 moderate agreement, 0.21 to 0.40 fair agreement, and <0.21 slight agreement. The concordance was subanalysed in patients with and without prednisolone.
 
Results
The demographic and clinical characteristics of 38 patients are summarised in Table 1. All patients were residents of Hong Kong. Half of the patients were prescribed systemic steroid therapy that comprised prednisolone at a dose of 2.5 mg daily to 15 mg daily. All except three patients with SPA were on various conventional disease-modifying antirheumatic drugs.
 

Table 1. Demographic and clinical characteristics of patients
 
The results of the concomitant TST and IGRA are shown in Table 2. Of the 38 patients, based on an induration of 10-mm diameter as the cut-off value, 13 (34.2%) had a positive TST, 11 (28.9%) had a positive IGRA. The agreement between A.TB IGRA test and TST was 73.7%. Six patients were TST+/A.TB– and four were TST–/A.TB+. Subgroup analysis showed that four of the six divergent TST+/A.TB– results were in patients on systemic steroid, and only three patients with systemic steroid were A.TB+ versus eight patients without. When positive TST was defined as an induration of 5-mm diameter, half of the patients had a positive TST, among them nine were TST+/A.TB–. Only one was TST–/A.TB+. In patients prescribed a systemic steroid, with 5-mm induration as positivity, TST missed no patients who had positive IGRAs.
 

Table 2. Tuberculin skin test (TST) and A.TB test results
 
Analysis of the agreement between the two tests, assessed by kappa statistic, showed only fair strength in our study, with a kappa value of 0.39 (Table 3). When a 5-mm induration was taken as a positive TST, however, the agreement between the two tests improved to moderate with a kappa value of 0.47. Subgroup analysis revealed that the agreement between both tests improved further (kappa=0.57) in patients not taking a concurrent systemic steroid. For patients taking a systemic steroid, the agreement was only slight (kappa=0.066). Again, the agreement of the TST and IGRA was substantial (kappa=0.69) in patients not on systemic steroid therapy when a 5-mm induration was regarded as positive.
 

Table 3. Agreement between the two tests
 
At the end of the study, 32 of the initial 38 patients had received biologic agents. None of them developed active TB during the 1-year follow-up period.
 
Discussion
In clinical practice there is no gold standard test for diagnosing LTBI. Both IGRA and TST have strengths and weaknesses. In a meta-analysis performed on an unselected population, the specificity of IGRA was 99% in a non-BCG–vaccinated population and 96% in a BCG-vaccinated population.14 The specificity of the TST was 97% in a non-BCG–vaccinated population but dropped to 59% in a BCG-vaccinated population.14 In addition to BCG history, comparison between the two tests must take into account the underlying disease, the immunosuppression status, and the background TB burden of the population being screened.
 
In this study, we found only a fair agreement (kappa=0.39) between the results of TST and A.TB IGRA in arthritis patients from a TB-endemic area. Some studies have also reported a discrepancy between the two tests in countries with intermediate TB burden.15 16 Nonetheless, the reported agreement between TST and the IGRA was good (kappa of 0.72 in United Kingdom17 and 0.87 in Denmark18). Consequently, the incidence of TB is a crucial determinant of agreement between the two tests.
 
In this study the concordance between the TST and the IGRA was also affected by immune status. There was only slight agreement in patients taking concurrent prednisolone, but the agreement improved when these patients were excluded from the analysis. Some previous studies of immunosuppressed RA patients have shown similarly poor concordance between the two tests regardless of TB burden.19 20 There was also discordance between the two tests in LTBI diagnosis among individuals infected with the human immunodeficiency virus.21 The patients on prednisolone in our study had a lower rate of positivity for both tests. It seems intuitive to assume that an immunosuppressed state will induce a depressed response to a T-cell reaction. In the literature, a systematic review showed that both positive IGRA and positive TST results were significantly influenced by immunosuppressive therapy.22
 
The Hong Kong guideline for the TST cut-off value for LTBI diagnosis before anti-tumour necrosis factor treatment is an induration of >10 mm.3 In the current study, we showed that the TST cut-off value that achieved better agreement between IGRA and TST results was 5 mm. If we cannot rely on IGRA to diagnose LTBI, it may be more appropriate to lower that TST cut-off to 5 mm. We also showed that our approach to LTBI screening with both TST and IGRA was successful in preventing the development of active TB in patients who would receive biologic therapy. This dual testing strategy might be especially applicable to patients on systemic steroid, as they are at higher risk of developing active TB and the two test results are more discordant. The consequent improved sensitivity will invariably lower the specificity and cause a potential overtreatment. In these high-risk settings, however, it is reasonable to favour sensitivity in screening for LTBI.
 
Only five patients could give a definite history of BCG vaccination. For other patients, such information was uncertain. While this might reflect the local clinical situation, it is one of the limitations of the present study. Despite the mechanistic similarity, because of the different interpretation methods employed for the test results and the lack of comparative trials of the performance of A.TB IGRA and other IGRAs, the conclusions drawn from the current study may not be applicable to patients who are given a different IGRA. Further studies using individual IGRAs may be warranted to address the same question.
 
Conclusion
In arthritis patients in a TB-endemic population, the level of agreement between TST and A.TB IGRA for detecting LTBI was only fair. Although 10 mm is the usual cut-off for TST, the level of agreement between the two tests improved from fair to moderate when a 5-mm cut-off was used. A dual testing strategy with TST and IGRA appeared to be effective and should be pursued, especially in patients who are prescribed a systemic steroid. The issue of potential overtreatment is yet to be evaluated.
 
Declaration
All authors have disclosed no conflicts of interst.
 
References
1. Furst DE. The risk of infections with biologic therapies for rheumatoid arthritis. Semin Arthritis Rheum 2010;39:327-46. Crossref
2. World Health Organization. Guidelines on the management of latent tuberculosis infection. Geneva, Switzerland: World Health Organization; 2015.
3. Mok CC. Consensus statements on the indications and monitoring of anti-tumor necrosis factor (TNF) therapy for rheumatic diseases in Hong Kong. Hong Kong Bull Rheum Dis 2005;5:19-25.
4. Huebner RE, Schein MF, Bass JB Jr. The tuberculin skin test. Clin Infect Dis 1993;17:968-75. Crossref
5. Matulis G, Jüni P, Villiger PM, Gadola SD. Detection of latent tuberculosis in immunosuppressed patients with autoimmune diseases: performance of a Mycobacterium tuberculosis antigen-specific interferon gamma assay. Ann Rheum Dis 2008;67:84-90. Crossref
6. Ponce de Leon D, Acevedo-Vasquez E, Alvizuri S, et al. Comparison of an interferon-gamma assay with tuberculin skin testing for detection of tuberculosis (TB) infection in patients with rheumatoid arthritis in a TB-endemic population. J Rheumatol 2008;35:776-81.
7. Song Q, Guo H, Zhong H, et al. Evaluation of a new interferon-gamma release assay and comparison to tuberculin skin test during a tuberculosis outbreak. Int J Infect Dis 2012;16:e522-6. Crossref
8. Ferrara G, Losi M, Meacci M, et al. Routine hospital use of a new commercial whole blood interferon-gamma assay for the diagnosis of tuberculosis infection. Am J Respir Crit Care Med 2005;172:631-5. Crossref
9. Kleinert S, Tony HP, Krueger K, et al. Screening for latent tuberculosis infection: performance of tuberculin skin test and interferon-gamma release assays under real-life conditions. Ann Rheum Dis 2012;71:1791-5. Crossref
10. Mariette X, Baron G, Tubach F, et al. Influence of replacing tuberculin skin test with ex vivo interferon gamma release assays on decision to administer prophylactic antituberculosis antibiotics before anti-TNF therapy. Ann Rheum Dis 2012;71:1783-90. Crossref
11. Winthrop KL, Weinblatt ME, Daley CL. You can’t always get what you want, but if you try sometimes (with two tests—TST and IGRA—for tuberculosis) you get what you need. Ann Rheum Dis 2012;71:1757-60. Crossref
12. Cao H, Agrawal D, Kushner N, Touzjian N, Essex M, Lu Y. Delivery of exogenous protein antigens to major histocompatibility complex class I pathway in cytosol. J Infect Dis 2002;185:244-51. Crossref
13. McEvers K, Elrefaei M, Norris P, et al. Modified anthrax fusion proteins deliver HIV antigens through MHC class I and II pathways. Vaccine 2005;23:4128-35. Crossref
14. Pai M, Zwerling A, Menzies D. Systematic review: T-cell–based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med 2008;149:177-84. Crossref
15. Yilmaz N, Zehra Aydin S, Inanc N, Karakurt S, Direskeneli H, Yavuz S. Comparison of QuantiFERON-TB Gold test and tuberculin skin test for the identification of latent Mycobacterium tuberculosis infection in lupus patients. Lupus 2012;21:491-5. Crossref
16. Lee JH, Sohn HS, Chun JH, et al. Poor agreement between QuantiFERON-TB Gold test and tuberculin skin test results for the diagnosis of latent tuberculosis infection in rheumatoid arthritis patients and healthy controls. Korean J Intern Med 2014;29:76-84. Crossref
17. Ewer K, Deeks J, Alvarez L, et al. Comparison of T-cell-based assay with tuberculin skin test for diagnosis of Mycobacterium tuberculosis infection in a school tuberculosis outbreak. Lancet 2003;361:1168-73. Crossref
18. Brock I, Weldingh K, Lillebaek T, Follmann F, Andersen P. Comparison of tuberculin skin test and new specific blood test in tuberculosis contacts. Am J Respir Crit Care Med 2004;170:65-9. Crossref
19. Huang YW, Shen GH, Lee JJ, Yang WT. Latent tuberculosis infection among close contacts of multidrug-resistant tuberculosis patients in central Taiwan. Int J Tuberc Lung Dis 2010;14:1430-5.
20. Shalabi NM, Houssen ME. Discrepancy between the tuberculin skin test and the levels of serum interferon-gamma in the diagnosis of tubercular infection in contacts. Clin Biochem 2009;42:1596-601. Crossref
21. Mandalakas AM, Hesseling AC, Chegou NN, et al. High level of discordant IGRA results in HIV-infected adults and children. Int J Tuberc Lung Dis 2008;12:417-23.
22. Shahidi N, Fu YT, Qian H, Bressler B. Performance of interferon-gamma release assays in patients with inflammatory bowel disease: a systematic review and meta-analysis. Inflamm Bowel Dis 2012;18:2034-42. Crossref

A prospective interventional study to examine the effect of a silver alloy and hydrogel-coated catheter on the incidence of catheter-associated urinary tract infection

Hong Kong Med J 2017 Jun;23(3):239–45 | Epub 17 Feb 2017
DOI: 10.12809/hkmj164906
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
A prospective interventional study to examine the effect of a silver alloy and hydrogel–coated catheter on the incidence of catheter-associated urinary tract infection
Patrick HY Chung, FRCSEd(Paed), FHKAM (Surgery)1; Carol WY Wong, MB, BS, MRCSEd1; Christopher KC Lai, MB, ChB, FRCPath2; HK Siu, BSc (Statistics), MPhil (CUHK)3; Dominic NC Tsang, MB, BS, FRCPath2,3; KY Yeung, MNurs, BNurs4; Dennis KM Ip, MB, BS, MPhil(Epidemiology)(Cantab)5; Paul KH Tam, FRCS (Edin, Glasg, Irel), FHKAM (Surgery)1
1 Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
2 Department of Pathology, Queen Elizabeth Hospital, Jordan, Hong Kong
3 Chief Infection Control Officer’s Office, Hospital Authority, Hong Kong
4 Infection Control Team, Central Nursing Department, Kowloon Hospital, Argyle Street, Hong Kong
5 School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
 
Corresponding author: Dr Christopher KC Lai (laikcc@ha.org.hk)
 
 Full paper in PDF
 
Abstract
Introduction: Catheter-associated urinary tract infection is a major hospital-acquired infection. This study aimed to analyse the effect of a silver alloy and hydrogel–coated catheter on the occurrence of catheter-associated urinary tract infection.
 
Methods: This was a 1-year prospective study conducted at a single centre in Hong Kong. Adult patients with an indwelling urinary catheter for longer than 24 hours were recruited. The incidence of catheter-associated urinary tract infection in patients with a conventional latex Foley catheter without hydrogel was compared with that in patients with a silver alloy and hydrogel–coated catheter. The most recent definition of urinary tract infection was based on the latest surveillance definition of the National Healthcare Safety Network managed by Centers for Disease Control and Prevention.
 
Results: A total of 306 patients were recruited with a similar ratio between males and females. The mean (standard deviation) age was 81.1 (10.5) years. The total numbers of catheter-days were 4352 and 7474 in the silver-coated and conventional groups, respectively. The incidences of catheter-associated urinary tract infection per 1000 catheter-days were 6.4 and 9.4, respectively (P=0.095). There was a 31% reduction in the incidence of catheter-associated urinary tract infection per 1000 catheter-days in the silver-coated group. Escherichia coli was the most commonly involved pathogen (36.7%) of all cases. Subgroup analysis revealed that the protective effect of silver-coated catheter was more pronounced in long-term users as well as female patients with a respective 48% (P=0.027) and 42% (P=0.108) reduction in incidence of catheter-associated urinary tract infection. The mean catheterisation time per person was the longest in patients using a silver-coated catheter (17.0 days) compared with those using a conventional (10.8 days) or both types of catheter (13.6 days) [P=0.01].
 
Conclusions: Silver alloy and hydrogel–coated catheters appear to be effective in preventing catheter-associated urinary tract infection based on the latest surveillance definition. The effect is perhaps more prominent in long-term users and female patients.
 
 
New knowledge added by this study
  • The use of a silver alloy and hydrogel–coated (SAH) catheter has the potential to reduce catheter-associated urinary tract infection (CA-UTI), especially in certain subgroups of patients (long-term users and female patients).
Implications for clinical practice or policy
  • The use of a SAH catheter potentially reduces the incidence of CA-UTI. This will lead to less morbidity and medical costs associated with CA-UTI.
  • This study provides pilot data for future research.
 
 
Introduction
Catheter-associated urinary tract infection (CA-UTI) is a major cause of hospital-acquired infection, with local data showing 4.9 infections per 1000 catheter-days.1 Internationally, an estimated 900 000 nosocomial UTIs occur every year, prolonging the mean duration of hospital stay by 1 to 3.8 days. It has been estimated that approximately 80% of UTIs are related to the presence of an indwelling urinary catheter. In severe cases, these infections may lead to bacteraemia, urosepsis, and even mortality.2 3 A case-control study also suggested that patients with CA-UTI had excess costs of US$3803 compared with patients without infection.4 Therefore, by prevention of CA-UTI, a significant reduction in morbidity and mortality, as well as the health care economic burden, can be anticipated.
 
Bactiguard-coated Foley catheters (Bactiguard, Sweden) were approved by the US Food and Drug Administration in 1994. These catheters have a stable noble metal alloy and hydrogel coating (also referred to as silver alloy and hydrogel–coated, SAH) on the outer- and inner-luminal surfaces of the catheter, providing repellent and anti-infective properties by preventing the formation of microbial biofilm. The coating consists of gold, silver and palladium, and also preserves the urethral mucosal integrity and helps to avoid the onset of inflammation. Previous studies of CA-UTI prevention had asymptomatic bacteriuria (ASB) alone or in combination with symptomatic UTI as the endpoint so their clinical relevance was called into question. We conducted a prospective, interventional study to provide additional data on the effectiveness of the noble metal alloy urinary catheter in the prevention of CA-UTI, using the updated surveillance definition of National Healthcare Safety Network (NHSN) managed by the Centers for Disease Control and Prevention (CDC). This surveillance definition was adopted in 2009 and modified the criteria for symptomatic infection, as well as adding a category and definition for asymptomatic bacteraemic UTI together with the removal of ASB completely.5 To study the effect on ASB, we adopted the criteria used in the Infectious Diseases Society of America practice guideline developed in 2009.6
 
Methods
This single-centre 1-year prospective study was completed in 2012 in a regional rehabilitation hospital in Hong Kong. The study population was in-patients in two medical rehabilitation wards. All patients over 18 years of age on either of the wards during the study period with an indwelling catheter for longer than 24 hours were recruited after giving informed consent. Patients who underwent suprapubic catheterisation, single in-and-out catheterisation for collection of a urine specimen, intermittent catheterisation for urine drainage, catheterisation for less than 24 hours, or who were catheterised with a silicone Foley catheter, and those who had been treated with antibiotics for a UTI were excluded from the study. Both of the study wards rotated through the two different interventions in two 6-month periods in order to act as a self-control to minimise the potential problem of variability in medical and nursing practice that might affect the outcomes. Conventional latex Foley catheters without hydrogel (sized Fr 12, 14, and 16) were used for catheterisation on both wards during the first half of the study period; SAH catheters (sized Fr 12, 14, and 16) were used during the second half of the study period. If a catheter was changed due to the presence of infection, the appropriate catheter according to the month of the study was used. Thus it was possible for patients who required a catheter for a long time and underwent catheter exchange to be exposed to both types of urinary catheter (Fig 1).
 

Figure 1. Flowchart showing the study design and patient distribution
 
The definition of CA-UTI was adopted and modified from the CDC/NHSN definition of symptomatic UTI (Appendix5 6). Routine, regular screening and clinical urine samples were collected from all subjects according to the hospital protocol. Routine urine samples were taken from all subjects at four fixed time-points: on admission, on catheterisation, before removal of the catheter, and before hospital discharge. Screening samples were taken weekly. Clinical samples were taken whenever a patient demonstrated symptoms and signs of UTI, or as part of a sepsis workup. The incidence of CA-UTI in the two groups was analysed in terms of the absolute number of CA-UTI episodes and the number of CA-UTI episodes per 1000 catheter-days. Values were expressed as mean ± standard deviation. Comparison between the two groups was performed by Pearson’s Chi squared test, Student’s t test, and one-way analysis of variance test when appropriate with a two-sided significance level of 0.05. The rate ratio of CA-ASB and CA-UTI between the two groups was compared by exact Poisson test for rate ratio. The occurrence of CA-UTI between the two groups was also analysed with Kaplan-Meier analysis. Results were analysed using the Statistical Package for the Social Sciences (Windows version 21.0; SPSS Inc, Armonk [NY], US) and R version 3.1.2.
 

Appendix. Definition of CA-UTI5 and CA-ASB6 adopted in the current study
 
This study was done in accordance with the principles outlined in the Declaration of Helsinki.
 
Results
During the 1-year study period, 306 patients were recruited. The male-to-female ratio was 1:1.13 and the mean age was 81.1 ± 10.5 years (Table 1). Overall, 187 patients used a conventional catheter only, 36 patients used a SAH catheter only, and 83 patients used both a conventional and a SAH catheter (Fig 1).
 

Table 1. Characteristics of the study population, specimens collected, and catheter used
 
The total numbers of catheter-days were 4352 and 7474 in the SAH and conventional groups, respectively. The numbers of CA-UTI episodes were 28 and 70, respectively. Thus the incidences of CA-UTI per 1000 catheter-days in the SAH and conventional groups were 6.4 and 9.4, respectively (P=0.095) with a rate ratio of 0.69 (95% confidence interval [CI], 0.42-1.08). There was a 31% reduction in CA-UTI incidence in the SAH group. Using Kaplan-Meier analysis and log-rank test, SAH catheter was associated with a significantly lower rate of CA-UTI (P=0.045; Fig 2). Regarding CA-ASB, the incidences per 1000 catheter-days in the SAH and conventional groups were 70.8 and 67.2, respectively (P=0.467) with a rate ratio of 1.05 (95% CI, 0.91-1.22). Results are summarised in Table 2. Blood cultures were taken from patients who developed CA-UTI. In both groups, none of the patients with CA-UTI developed bacteraemia. Escherichia coli was the most commonly involved urinary pathogen and accounted for 36.7% of all cases, followed by Candida albicans (17.3%) and Proteus mirabilis (14.3%) [Table 3]. The same pathogens were observed in both groups.
 

Figure 2. Comparison of CA-UTI occurrence between SAH and conventional catheters in the entire study population using Kaplan-Meier analysis
 

Table 2. Overall comparison of CA-UTI and CA-ASB episodes between SAH catheters and conventional catheters
 

Table 3. Organisms identified from CA-UTI specimens (some specimens showed mixed flora)
 
This study was not a randomised controlled trial. Thus to eliminate patient selection bias, a subgroup analysis was performed among those patients who used both types of catheter (n=83). These patients had more catheters used and more catheter-days than those patients who used only one type of catheter (Table 4a). This was due to study design where longer-term users had a higher chance of exposure to both types of urinary catheter. Among them, the total numbers of catheter-days were 3210 and 3457 in the SAH and conventional groups, respectively. The numbers of CA-UTI episodes were 17 and 35, respectively. This resulted in the incidences of CA-UTI per 1000 catheter-days in the SAH and conventional groups being 5.3 and 10.1, respectively (P=0.027) with a rate ratio of 0.52 (95% CI, 0.27-0.96). There was a statistically significant reduction of 48% in CA-UTI incidence in the SAH group (Table 4b). Because the catheters were exchanged when an infection occurred, the CA-UTI reducing effect resulted in less need to exchange a SAH catheter—the mean catheterisation time per person was 17.0 days for a SAH catheter compared with 10.8 days for a conventional catheter and 13.6 days for patients using both catheters (Table 4a).
 

Table 4. (a) Characteristics of patients who used both types of catheter, SAH catheter only, or conventional catheter only. (b) Comparison of CA-UTI and CA-ASB incidences between SAH and conventional catheters in 83 patients who used both types of catheter (cross-over group). (c) Comparison of CA-UTI and CA-ASB incidences between SAH and conventional catheters in male and female patients
 
To examine the presence of outcome difference in relation to gender in the entire study population, we also performed a subgroup analysis based on gender differences (Table 4c). In male patients (n=144), the number of CA-UTI episodes was 15 in the SAH group (total catheter-days, 1966) and 33 in the conventional group (total catheter-days, 3529). The incidences of CA-UTI per 1000 catheter-days in the SAH and conventional groups were 7.6 and 9.4, respectively (P=0.551) with a rate ratio of 0.82 (95% CI, 0.41-1.54). For female patients (n=162), the number of CA-UTI episodes was 13 in the SAH group (total catheter-days, 2386) and 37 in the conventional group (total catheter-days, 3945). The incidences of CA-UTI per 1000 catheter-days in the SAH and conventional groups were 5.4 and 9.4, respectively (P=0.108), with a rate ratio of 0.58 (95% CI, 0.28-1.12).
 
Discussion
Urinary tract infection is one of the most commonly encountered infections in daily clinical practice and the majority of cases are catheter-related. Although a number of clinical practices such as aseptic technique for catheter insertion, closed drainage systems, and shorter duration of catheterisation have been introduced in an attempt to reduce the onset of CA-UTI, the incidence remains high.3 7 Therefore, research for strategies or new technologies to prevent CA-UTI is still needed. Since the early 1990s, research has focused on different anti-infective catheter-coating materials but results have been generally inconclusive. Bactiguard-coated Foley catheters, an essential noble metal (gold, silver, and palladium) alloy and hydrogel–coated catheter, have been introduced to slow bacterial colonisation.
 
In the early 2000s, a randomised cross-over study by Karchmer et al8 demonstrated that the risk of UTI could be decreased by 21% on wards and by 32% among patients when a noble metal alloy catheter was used instead of a conventional catheter. Since then, more studies to compare anti-infective urinary catheters with conventional urinary catheters have been carried out. The noble metal alloy indwelling catheter has been shown in multiple large clinical trials and smaller case studies to reduce the incidence of CA-UTI, when compared with conventional catheters.9 10 11 12 13 14 15 These studies have examined endpoints such as bacteriuria and symptomatic CA-UTI, or surveillance-defined UTI.8 16 17 In a study by Pickard et al,17 noble metal alloy catheters were found to be ineffective in reducing the incidence of symptomatic surveillance-defined UTI when used in short-term (mean, 2 days) surgical patients and they did not support the routine use of these catheters in this patient group. Lack of effect is not surprising due to the short catheterisation time and low-risk patient group. In a more recent multicentre cohort study in 2014, Lederer et al4 examined the impact of noble metal alloy catheters on symptomatic CA-UTI and antibiotic use based on the NHSN surveillance and concluded that a 58% relative reduction (P<0.0001) in NHSN-defined CA-UTI rate was observed and 60% fewer antibiotics were used when compared with conventional catheters.
 
In the present study, we were able to demonstrate a 31% reduction in the incidence of CA-UTI episodes per 1000 catheter-days in the SAH group although it did not reach statistical significance, likely due to too small study groups. We believe that the incidence rate per catheter-days is a more appropriate comparison to reflect the risk of infection associated with different types of catheter as it also takes into account the duration of catheterisation, which is known to be an important factor associated with the incidence of CA-UTI. This is also reflected by the fact that the noble metal alloy catheter can be left in situ for the longest period of time. Although the cost of each SAH catheter (approximately HK$100) is higher than that of a conventional catheter (approximately HK$15), we believe the benefit of longer duration and potential reduction in CA-UTI justify its use.
 
With subgroup analysis, the effect of a noble metal alloy catheter on reduction of CA-UTI was more prominent in long-term users and female patients. In patients who used both catheters and who served as their own control, a significant reduction (48%, P=0.027) was observed in the SAH group. The same reduction was not observed in those who used only one type of urinary catheter whose number of catheters used and catheter-days were significantly fewer (Table 4a and 4b). We cannot give an exact explanation for this observation but we believe the protective effect of Bactiguard catheters is best seen in patients who require long-term urinary catheterisation. Nonetheless, it must be emphasised that the effect due to mixed use of catheters is unknown. The reduction in CA-UTI was also slightly more prominent in female patients (rate ratio of CA-UTI episodes per 1000 catheter-days, 0.58; Table 4c). Whether these are genuine and significant findings will warrant future randomised controlled studies to confirm.
 
This study has several limitations. First, this was a non-randomised study with a lack of blinding of outcome observers. Second, some patients might have used both catheters and the effects of each catheter type might have confounded the results. Third, as patients were recruited from a regional rehabilitation hospital, their underlying different medical conditions and risk factors might have affected the outcomes. As patients admitted during the two 6-month periods were incomparable, confounding by underlying risk factors for CA-UTI could not be excluded.
 
Conclusions
Our findings suggest that SAH-coated catheters may be effective in reducing CA-UTI based on CDC’s NHSN surveillance definition. The effect seems to be more pronounced in high-risk patients such as long-term users and female patients. Future randomised controlled studies on this subject should be carried out based on these pilot data.
 
Declaration
All authors have disclosed no conflicts of interest.
 
References
1. Kong MY. Systematic review of the effective approach for limiting urinary catheter use and duration to reduce nosocomial catheter-associated urinary tract infections in hospitalized patients. Hong Kong: Faculty of Health and Social Sciences, the Hong Kong Polytechnic University; 2010.
2. Centers for Disease Control. Public health focus: surveillance, prevention, and control of nosocomial infections. MMWR Morb Mortal Wkly Rep 1992;41:783-7.
3. Maki DG, Tambyah PA. Engineering out the risk for infection with urinary catheters. Emerg Infect Dis 2001;7:342-7. Crossref
4. Lederer JW, Jarvis WR, Thomas L, Ritter J. Multicenter cohort study to assess the impact of a silver-alloy and hydrogel-coated urinary catheter on symptomatic catheter-associated urinary tract infections. J Wound Ostomy Continence Nurs 2014;41:473-80. Crossref
5. Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention. The National Healthcare Safety Network manual. Atlanta, GA: Centers for Disease Control and Prevention; 2009.
6. Hooton TM, Bradley SF, Cardenas DD, et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis 2010;50:625-63. Crossref
7. Salgado CD, Karchmer TB, Farr BM. Prevention of catheter-associated urinary tract infection. In: Wenzel RP, editor. Prevention and control of nosocomial infections. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2003: 297-311.
8. Karchmer TB, Giannetta ET, Muto CA, Strain BA, Farr BM. A randomized crossover study of silver-coated urinary catheters in hospitalized patients. Arch Intern Med 2000;160:3294-8. Crossref
9. Gentry H, Cope S. Using silver to reduce catheter-associated urinary tract infections. Nurs Stand 2005;19:51-4. Crossref
10. Newton T, Still JM, Law E. A comparison of the effect of early insertion of standard latex and silver-impregnated latex foley catheters on urinary tract infections in burn patients. Infect Control Hosp Epidemiol 2002;23:217-8. Crossref
11. Gould CV, Umscheid CA, Agarwal RK, Kuntz G, Pegues DA; Healthcare Infection Control Practices Advisory Committee. Guideline for prevention of catheter-associated urinary tract infections 2009. Infect Control Hosp Epidemiol 2010;31:319-26. Crossref
12. Schumm K, Lam TB. Types of urethral catheters for management of short-term voiding problems in hospitalized adults: a short version Cochrane review. Neurourol Urodyn 2008;27:738-46. Crossref
13. Seymour C. Audit of catheter-associated UTI using silver alloy-coated Foley catheters. Br J Nurs 2006;15:598-603. Crossref
14. Rupp ME, Fitzgerald T, Marion N, et al. Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control 2004;32:445-50. Crossref
15. Verleyen P, De Ridder D, Van Poppel H, Baert L. Clinical application of the Bardex IC Foley catheter. Eur Urol 1999;36:240-6. Crossref
16. Johnson JR, Kuskowski MA, Wilt TJ. Systematic review: antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients. Ann Intern Med 2006;144:116-26. Crossref
17. Pickard R, Lam T, MacLennan G, et al. Antimicrobial catheters for reduction of symptomatic urinary tract infection in adults requiring short-term catheterisation in hospital: a multicentre randomised controlled trial. Lancet 2012;380:1927-35. Crossref

Outcomes after oesophageal perforation: a retrospective cohort study of patients with different aetiologies

Hong Kong Med J 2017 Jun;23(3):231–8 | Epub 10 Mar 2017
DOI: 10.12809/hkmj164942
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE  CME
Outcomes after oesophageal perforation: a retrospective cohort study of patients with different aetiologies
TT Law, FRCSEd, FHKAM (Surgery); Jonathan YL Chan, MB, BS; Desmond KK Chan, FRCSEd, FHKAM (Surgery); Daniel Tong, MS, PhD; Ian YH Wong, FRCSEd, FHKAM (Surgery); Fion SY Chan, FRCSEd, FHKAM (Surgery); Simon Law, MS, FRCSEd
Division of Esophageal and Upper Gastrointestinal Surgery, Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
 
Corresponding author: Prof Simon Law (slaw@hku.hk)
 
 Full paper in PDF
 
Abstract
Introduction: The mortality rate after oesophageal perforation is high despite advances in operative and non-operative techniques. In this study, we sought to identify risk factors for hospital mortality after oesophageal perforation treatment.
 
Methods: We retrospectively examined patients treated for oesophageal perforation in a university teaching hospital in Hong Kong between January 1997 and December 2013. Their demographic and clinical characteristics, aetiology, management strategies, and outcomes were recorded and analysed.
 
Results: We identified a cohort of 43 patients treated for perforation of the oesophagus (28 men; median age, 66 years; age range, 30-98 years). Perforation was spontaneous in 22 (51.2%) patients (15 with Boerhaave’s syndrome and seven with malignant perforation), iatrogenic in 15 (34.9%), and provoked by foreign body ingestion in six (14.0%). Of the patients, 14 (32.6%) had pre-existing oesophageal disease. Perforation occurred in the intrathoracic oesophagus in 30 (69.8%) patients. Emergent surgery was undertaken in 23 patients: 16 underwent primary repair, six surgical drainage or exclusion, and one oesophagectomy. Twenty patients were managed non-operatively, 13 of whom underwent stenting. Two stented patients subsequently required oesophagectomy. Four patients had clinical signs of leak after primary repair: two were treated conservatively and two required oesophagectomy. Overall, six (14.0%) patients required oesophagectomy, one of whom died. Nine other patients also died in hospital; the hospital mortality rate was 23.3%. Pre-existing pulmonary and hepatic disease, and perforation associated with malignancy were significantly associated with hospital mortality (P=0.03, <0.01, and <0.01, respectively).
 
Conclusions: Most oesophageal perforations were spontaneous. Mortality was substantial despite modern therapies. Presence of pre-existing pulmonary disease, hepatic disease, and perforation associated with malignancy were significantly associated with hospital mortality. Salvage oesophagectomy was successful in selected patients.
 
 
New knowledge added by this study
  • We report the outcomes of a cohort of patients with oesophageal perforation managed in a single centre.
  • Mortality rate was substantial despite advances in surgery and endoscopic therapy.
Implications for clinical practice or policy
  • Surgical and non-operative treatment options are available.
  • The aetiology, timing of presentation, and patients’ co-morbidities should be considered carefully when managing oesophageal perforation.
  • Oesophagectomy may be indicated in selected patients.
 
 
Introduction
Oesophageal perforation is uncommon, yet its management remains a substantial challenge to surgeons. Diagnosis and treatment are often delayed due to lack of clinical suspicion and accurate diagnostic tools. Hence, reported mortality rates range from 10% to 25%.1 2 3
 
Oesophageal perforation can occur spontaneously from forceful vomiting (Boerhaave’s syndrome), or in pre-existing pathology (such as oesophageal cancer) or can be associated with ingestion of a foreign body. Iatrogenic perforation usually occurs after therapeutic endoscopic procedures such as dilatation, and is the predominant cause of perforation reported in many studies.1 2 4 5
 
Diagnosis and treatment within 24 hours of perforation are critical if favourable outcomes are to be achieved.1 6 After diagnosis and the initial phase of resuscitation, there is a wide range of treatment options, which are informed by the presentation, aetiology, location of perforation, and the extent of mediastinal or intrathoracic contamination. Surgery remains the mainstay of treatment; the conventional operative approach is considered to be primary repair of the perforation site and drainage.7 8 9 Some surgeons advocate primary repair only for those patients presented within 24 hours of perforation,10 while others would try primary repair as the initial treatment regardless of the timing of presentation.9 11 Endoscopic treatment, including stenting, is becoming an increasingly popular means of treating oesophageal perforation in selected patients, and reportedly has a high technical success rate.12 13 14 15 16
 
Oesophageal perforation should be managed in specialised centres. In this study, we report the characteristics, treatment, and outcomes of a cohort of patients with oesophageal perforation treated at a single tertiary centre in Hong Kong over a period of 16 years.
 
Methods
We retrospectively identified patients treated for perforation of the oesophagus at a university teaching hospital in Hong Kong between January 1997 and December 2013. Patients’ demographic characteristics, presentation, investigations, management, and outcomes were recorded.
 
Diagnosis of perforation was confirmed by one or more of the following methods: oesophagogastroduodenoscopy (OGD), water-soluble contrast swallow study, and contrast-enhanced computed tomography imaging of the neck, thorax, and abdomen. After confirmation of the diagnosis, patients were resuscitated to address homoeostatic and haemodynamic disturbances, followed by definitive treatment. All patients were kept ‘nil by mouth’, administered parenteral broad-spectrum antibiotics and proton pump inhibitors, and chest drain(s) was inserted if clinically indicated. Patients with significant haemodynamic instability or respiratory distress requiring intubation and mechanical ventilation were admitted to the intensive care unit (ICU) for optimisation before definitive treatment.
 
Definitive treatment depended on the location of the perforation, its aetiology, the extent of mediastinal and intrathoracic contamination, and the patient’s physical status. In general, patients with malignant perforation or perforation contained within the mediastinal pleura were treated non-operatively. For the former, self-expanding metallic stents were inserted under fluoroscopic guidance. In selected patients with a benign cause of perforation and limited contamination, a polyester oesophageal stent (Polyflex; Boston Scientific, Natick [MA], United States) was placed under fluoroscopic guidance. For patients in whom the site of perforation could not be identified, and in the absence of clinical signs of sepsis, a conservative management strategy was adopted. This entailed placement of a nasogastric feeding tube under endoscopic guidance, followed by enteral feeding for 7 days. Thereafter, a water-soluble contrast swallow study was undertaken to confirm the absence of a leak before oral feeding was resumed.
 
When a surgical management strategy was decided, patients with perforation of the intra-abdominal oesophagus were treated with laparotomy, primary repair of the perforation, and feeding jejunostomy. For an intrathoracic perforation with significant contamination of the pleural cavity, thoracotomy and primary repair was the preferred approach. A left-sided thoracotomy was the usual approach for Boerhaave’s perforation of the distal thoracic oesophagus. Necrotic tissue was debrided, the edges of the perforation were trimmed, and the defect was closed with fine sutures in two layers. The mucosal edges of the perforation were approximated using interrupted absorbable sutures, and the muscular defect was approximated using interrupted monofilament absorbable sutures. Lung decortication was performed. One drain was placed in close proximity to the repair, generally accompanied by one basal and one apical large-bore chest drain. Feeding jejunostomy was performed in selected patients. Postoperatively patients remained nil by mouth, and were given nutritional support and intravenous antibiotics. A contrast swallow study was generally performed 7 to 10 days postoperatively; oral intake was commenced if there was no evidence of leak. The choice of antibiotics and duration of treatment were guided by microbiology culture findings.
 
In selected patients who presented late, and in those who developed a persistent leak after primary repair, oesophageal exclusion (cervical oesophagostomy and jejunostomy) followed by second-stage oesophagectomy might be considered. In the first stage, the oesophagus was excluded proximally in the neck with an oesophagostomy, and the abdominal oesophagus was stapled. A drain was placed from the neck into the oesophageal stump for decompression. Oesophagectomy was performed once sepsis had subsided. A gastric tube was used for reconstruction via the retrosternal route, and cervical oesophagogastrostomy was performed.
 
The principles outlined in the Declaration of Helsinki have been followed.
 
Statistical analysis
Continuous data were represented as the median (range), unless otherwise stated. Fisher’s exact test was used to compare categorical variables and the Mann-Whitney U test for continuous variables. We undertook univariate analysis to identify factors associated with hospital mortality. P<0.05 was considered statistically significant. Data were analysed using SPSS 20.0 (IBM Corp, Armonk [NY], United States).
 
Results
During the study period, 43 patients with oesophageal perforation were identified. Patients’ demographic and clinical characteristics are summarised in Table 1. The median age of the cohort was 66 years (range, 30-98 years); 28 (65.1%) were men. Medical co-morbidities were present in 27 (62.8%) patients, and pre-existing oesophageal pathologies were present in 14 (32.6%; of whom half had oesophageal cancer). Spontaneous perforation occurred in 22 (51.2%) patients: 15 occurred as a result of Boerhaave’s syndrome and seven as a result of malignant perforation. Fifteen (34.9%) patients had an iatrogenic perforation: 13 occurred after an endoscopic procedure (three after endoscopic retrograde cholangiopancreatography and 10 after OGD), one occurred after attempted endotracheal intubation, and one occurred during thyroidectomy. Of the 10 OGDs, eight had been therapeutic. Six (14.0%) perforations were associated with ingestion of a foreign body.
 

Table 1. Patients’ clinical and demographic characteristics
 
Chest pain and vomiting were the most common presenting symptoms in patients with spontaneous perforation, occurring in 13 and 10 patients, respectively. Surgical emphysema and dysphagia were the least common presenting signs and symptoms; both were only present in two patients. Over half the patients presented and were diagnosed within 24 hours of symptom onset. Of the cohort of 43 patients, 29 (67.4%) underwent two out of the three diagnostic imaging modalities. The presenting symptoms and investigations of patients with spontaneous perforation are shown in Table 2.
 

Table 2. Presenting symptoms in patients with spontaneous perforation, and investigations undertaken in all patients
 
The management and outcomes of patients are shown in the Figure. Of the 15 patients with Boerhaave’s perforation, 10 underwent primary repair: four repairs were complicated by a leak and two patients subsequently required oesophagectomy. The remaining five patients were initially treated non-operatively: four underwent endoscopic stent placement and one endoscopic clipping of the perforation. Three patients required subsequent operations: one underwent oesophagectomy, one bypass operation, and one surgical drainage. There were no deaths in the group of patients with Boerhaave’s syndrome.
 

Figure. Outcomes of patients with oesophageal perforation according to treatment algorithm
 
Seven patients had malignant perforation: five were treated with endoscopic placement of a metallic stent. All but one of these procedures were successful; the patient in whom stenting failed underwent oesophagectomy. Five (71.4%) of the seven patients with malignant perforation died during their hospital stay.
 
There were 15 iatrogenic perforations (Fig). Nine of these patients underwent early operative treatment: five underwent primary repair, one exclusion, two drainage, and one oesophagectomy. There were no leaks in those who underwent primary repair. Six patients were initially treated non-operatively, four with stents, one with a feeding tube, and one was judged to be unfit for treatment. Two of the six patients initially treated non-operatively ultimately required surgery, one underwent exclusion, and the other surgical drainage. Five of the 15 patients with iatrogenic perforations died during their hospital stay, with a mortality rate of 33.3%.
 
Six oesophageal perforations were associated with foreign body ingestion (Fig). Three patients were treated non-operatively; of the remainder, one underwent primary repair, one exclusion, and one surgical drainage. None of these patients died during hospitalisation.
 
Overall, 16 of the 43 patients underwent primary repairs in the initial treatment, and four (25%) developed clinical signs of leak subsequently. All were from Boerhaave’s perforation. Two required oesophagectomy while two were managed conservatively.
 
Overall, six of the 43 patients underwent oesophagectomy, generally as a salvage treatment due to failure of other treatment modalities. Three patients with Boerhaave’s syndrome required oesophagectomy, two with persistent leak after primary repair and one with a persistent leak after stenting. All had presented >24 hours from symptom onset. One patient with a perforated oesophageal cancer developed a leak after stenting and required oesophagectomy. Two patients with iatrogenic perforation in the presence of caustic strictures underwent oesophagectomy. Only one patient who underwent oesophagectomy died in hospital.
 
Overall, 10 patients died in hospital, with a mortality rate of 23.3%. The 30-day mortality rate was 16.3%. The median length of hospital stay was 36.5 days (range, 6-241 days), and median ICU stay was 6 days (range, 0-71 days).
 
All 10 patients who died had pre-existing oesophageal disease; five had cancer of the oesophagus, one caustic stricture, and four had oesophageal varices secondary to hepatic cirrhosis. Malignant perforation had a substantially higher mortality rate of 71.4%. The median survival for patients with perforated oesophageal cancer was 28.5 days (range, 13-848 days).
 
The results of univariate analysis of factors potentially associated with hospital mortality are shown in Table 3. The presence of pulmonary disease, hepatic disease (liver cirrhosis), and malignant perforation were significantly associated with hospital mortality (P=0.03, <0.01, and <0.01, respectively), but the site of perforation and timing of presentation were not.
 

Table 3. Univariate analysis of factors associated with hospital mortality
 
Discussion
Oesophageal perforation may be difficult to diagnose. Patients can present with a wide variety of symptoms, which can be non-specific. It is not uncommon for the diagnosis to be missed in the acute phase. Computed tomography imaging (preferably with oral contrast) should be undertaken when the index of clinical suspicion is high, because it allows the site of mediastinal or intra-abdominal collections to be identified and rules out other pathologies. Of note, OGD performed by an experienced endoscopist using minimal insufflation is an effective means of detecting the site and size of perforation, and is reported to have a sensitivity and specificity of 100% and 83% for intrathoracic perforation, respectively.17 A positive OGD therefore has a substantial influence on clinical decision making.
 
Spontaneous perforation was the most common aetiology in our cohort; around one third was associated with underlying cancer of the oesophagus. Squamous cell carcinoma remains the most common malignant cell type globally, despite the rising incidence of adenocarcinoma in the western population. Patients often present at an advanced stage. Of those patients with malignant perforations, all but one had a squamous cell carcinoma of the intrathoracic oesophagus. Perforation either occurs spontaneously or results from concurrent chemoradiotherapy. Ohtsu et al18 reported a perforation rate of 13.9% (five out of 36 patients) in cases of T4-stage cancer of the oesophagus with concurrent chemoradiotherapy. In our cohort, perforation occurred shortly after completion of radiotherapy in one patient.
 
The prognosis for patients with perforated oesophageal cancer is poor. The disease is often inoperable and in these circumstances treatment is palliative.19 20 Non-operative treatment, such as insertion of a metallic covered stent, is the usual practice at our centre. Stenting of the intrathoracic portion of the oesophagus is technically straightforward and is successful in most cases. Sealing of the perforation site can be confirmed by a subsequent contrast study, and oral intake can be resumed in the absence of a leak. Nevertheless, the prognosis of this group of patients is poor despite the successful placement of a stent, and the hospital mortality rate remains high. Patients most often succumb as a consequence of sepsis caused by the perforation.
 
Many treatment options are available for non-malignant perforation, and the treatment strategy should be tailored to the individual. Factors to be considered include the site of perforation, extent of contamination, pre-existing oesophageal disease, and patient co-morbidities. Operative treatment is favoured for perforation of the intra-abdominal oesophagus or perforation that involves the oesophagogastric junction (OGJ). These patients often present with abdominal pain and peritonitis. Laparotomy, primary repair of the perforation, and fashioning of a feeding jejunostomy allow alimentation in the event of persistent leak. The placement of an oesophageal stent that crosses the OGJ has a higher chance of migration and is not recommended.
 
The intrathoracic oesophagus is the most common site of perforation. Of the three most common causes (Boerhaave’s syndrome, iatrogenic perforation, and foreign body ingestion), Boerhaave’s syndrome is the most challenging. Traditionally, Boerhaave’s syndrome is associated with a mortality rate of up to 30%.11 Patients may present late, the site of perforation is usually at the distal thoracic oesophagus, and there may be extensive contamination due to the high pressure generated by vomiting. Contamination with food particles is common. Operative treatment with primary closure of the perforation and drainage is favoured by many7 8 9; this is also our preferred approach. Many surgeons advocate primary repair irrespective of the timing of presentation.9 11 21 22 Leak rates after primary repair range from 17% to 32%.9 11 21 22 23 24 Minor leaks can be managed conservatively with drainage, while further surgery (usually exclusion) is required for larger leaks and in the presence of sepsis. Lin et al23 reported that the incidence of postoperative leak was 37.5% in patients in whom treatment was delayed for more than 48 hours, compared with 0% in those who were treated more promptly. Wright et al22 reported that three out of the four leaks in their patient cohort were repaired more than 24 hours after perforation. The incidence of leak after primary repair was 25.0% in our study, which is comparable to other reports in the literature. Of the four leaks, two patients required reoperation and ultimately oesophagectomy; both had presented more than 24 hours after symptom onset.
 
Endoscopic stenting for benign perforation has been reported in several small case series. Freeman et al13 14 have reported the outcomes of stent placement in patients with iatrogenic and spontaneous perforation. They proposed a hybrid approach, namely a combination of endoscopic and minimally invasive surgical techniques to drain intrathoracic and/or intra-abdominal collections. The main advantage of this strategy is the avoidance of thoracotomy and/or laparotomy. The incidence of stent migration was reported to be approximately 20% in their cohort of patients with spontaneous oesophageal perforation.14 Relative contra-indications to stent insertion include a perforation that crosses the OGJ and circumferential necrosis of the oesophagus. In our experience, operative treatment is recommended for the treatment of Boerhaave’s syndrome unless the patient is unfit for surgery or declines surgical treatment. Five patients in our series initially treated with stenting subsequently required surgery, of whom four had benign perforations (two with Boerhaave’s syndrome and two with iatrogenic perforations). One patient in our cohort with oesophageal dissection complicated by perforation underwent stenting in another hospital before transferring to our centre; this patient developed a persistent leak after stenting. In that case, the placement of the stent appeared to have aggravated the leak, and oesophagectomy was eventually required.25 In our opinion, stent placement in benign perforation is only suitable for selected patients who present early and have minimal contamination. However, stenting may allow more time for optimisation of a patient’s condition if they are initially judged not to be fit for surgery.
 
Oesophagectomy as a treatment for perforations was first reported in the 1950s.26 Single-stage oesophageal resection and reconstruction was first reported by Hendren and Henderson in 1968.27 Altorjay et al28 reported a hospital mortality rate of 3.7% in a series of patients undergoing oesophagectomy for intrathoracic perforation; in this series iatrogenic perforation represented 55.6% of all perforations. Some surgeons have opined that oesophagectomy may be superior to primary repair in the presence of pre-existing oesophageal disease and of extensive perforation with substantial sepsis, while the general condition of the patient should always be taken into account.28 29 There is no consensus about the optimum surgical approach and timing of reconstruction after oesophagectomy. We advocate primary repair as the initial treatment irrespective of the timing of presentation, and oesophagectomy is considered a salvage treatment. In our experience, patients with persistent leak after primary repair and sepsis should undergo oesophageal exclusion to control sepsis before oesophagectomy is contemplated. Oesophagectomy with primary reconstruction can be performed safely after patient optimisation. Oesophagectomy was undertaken in six patients in our cohort; three of these patients had pre-existing oesophageal disease. All patients had a cervical oesophagogastric anastomosis fashioned via the retrosternal route. A cervical anastomosis distant from the infected mediastinum appears to be a safe option.29 Thoracotomy is the most common surgical approach, but Yeo et al30 reported using transhiatal oesophagectomy to treat perforated oesophageal cancer in four patients. Thoracotomy is avoided in the transhiatal approach, but this technique can only be considered in perforations of the distal oesophagus and in the presence of minimal mediastinal contamination.
 
Oesophageal perforation after foreign body ingestion in adults is more common in China as a result of its dietary culture. The foreign body is usually a fish, chicken, or pork bone. An impacted foreign body can usually be retrieved endoscopically; however, oesophageal perforation can occur if there is deep penetration of the foreign body or extensive manipulation during retrieval. The site of perforation is usually the cervical oesophagus, followed by the intrathoracic oesophagus. In severe cases, operative management is indicated; the approach is dependent on the site of perforation, and the site and size of any collection. The aim of management is to drain any collection, remove any residual foreign body, repair the perforated site, and protect the airway. In the absence of sepsis and imaging appearances of a peri-oesophageal collection, conservative treatment may be warranted. Operative drainage may be necessary if there is a sizeable collection and if there is sepsis. Mediastinitis and sepsis are more likely after intrathoracic perforation, and would dictate treatment strategy.
 
It is essential to identify factors associated with mortality after oesophageal perforation so as to improve treatment and outcomes. Early diagnosis and management (in the ‘golden 24 hours’) are reportedly associated with superior outcomes.1 6 Malignant perforation, sepsis, the need for mechanical ventilation on presentation, and pulmonary co-morbidity are reported to have a significant impact on overall survival.5 In our cohort, pulmonary co-morbidity, hepatic disease, and malignant perforation were associated with risk of death. A recent meta-analysis of 75 studies that included 2971 patients reported a pooled mortality rate of 11.9% (95% confidence interval, 9.7%-14.3%).3 Of the different aetiologies, spontaneous perforation had the highest mortality rate of 14.8%.3
 
Oesophageal perforation remains a difficult condition to treat despite advances in surgery, endoscopic treatment, and ICU care. The mortality rate is still substantial with modern therapies. The presence of pre-existing pulmonary disease, hepatic disease, and perforation associated with malignancy was significantly associated with hospital mortality in our cohort. Oesophagectomy for salvage had a reasonable success rate in selected patients.
 
Declaration
The authors have disclosed no conflicts of interest.
 
References
1. Vallböhmer D, Hölscher AH, Hölscher M, et al. Options in the management of esophageal perforation: analysis over a 12-year period. Dis Esophagus 2010;23:185-90. Crossref
2. Søreide JA, Konradsson A, Sandvik OM, Øvrebø K, Viste A. Esophageal perforation: clinical patterns and outcomes from a patient cohort of Western Norway. Dig Surg 2012;29:494-502. Crossref
3. Biancari F, D’Andrea V, Paone R, et al. Current treatment and outcome of esophageal perforations in adults: systematic review and meta-analysis of 75 studies. World J Surg 2013;37:1051-9. Crossref
4. Abbas G, Schuchert MJ, Pettiford BL, et al. Contemporaneous management of esophageal perforation. Surgery 2009;146:749-55. Crossref
5. Bhatia P, Fortin D, Inculet RI, Malthaner RA. Current concepts in the management of esophageal perforations: a twenty-seven year Canadian experience. Ann Thorac Surg 2011;92:209-15. CrossRef
6. Shaker H, Elsayed H, Whittle I, Hussein S, Shackcloth M. The influence of the ‘golden 24-h rule’ on the prognosis of oesophageal perforation in the modern era. Eur J Cardiothorac Surg 2010;38:216-22. Crossref
7. Brinster CJ, Singhal S, Lee L, Marshall MB, Kaiser LR, Kucharczuk JC. Evolving options in the management of esophageal perforation. Ann Thorac Surg 2004;77:1475-83. Crossref
8. Eroglu A, Can Kürkcüogu I, Karaoganogu N, Tekinbaş C, Yimaz O, Başog M. Esophageal perforation: the importance of early diagnosis and primary repair. Dis Esophagus 2004;17:91-4. Crossref
9. Jougon J, Mc Bride T, Delcambre F, Minniti A, Velly JF. Primary esophageal repair for Boerhaave’s syndrome whatever the free interval between perforation and treatment. Eur J Cardiothorac Surg 2004;25:475-9. Crossref
10. Flynn AE, Verrier ED, Way LW, Thomas AN, Pellegrini CA. Esophageal perforation. Arch Surg 1989;124:1211-4. Crossref
11. Lawrence DR, Ohri SK, Moxon RE, Townsend ER, Fountain SW. Primary esophageal repair for Boerhaave’s syndrome. Ann Thorac Surg 1999;67:818-20. Crossref
12. Fischer A, Thomusch O, Benz S, von Dobschuetz E, Baier P, Hopt UT. Nonoperative treatment of 15 benign esophageal perforations with self-expandable covered metal stents. Ann Thorac Surg 2006;81:467-72. Crossref
13. Freeman RK, Van Woerkom JM, Ascioti AJ. Esophageal stent placement for the treatment of iatrogenic intrathoracic esophageal perforation. Ann Thorac Surg 2007;83:2003-7. Crossref
14. Freeman RK, Van Woerkom JM, Vyverberg A, Ascioti AJ. Esophageal stent placement for the treatment of spontaneous esophageal perforations. Ann Thorac Surg 2009;88:194-8. Crossref
15. Kiernan PD, Khandhar SJ, Fortes DL, Sheridan MJ, Hetrick V. Thoracic esophageal perforations. Am Surg 2010;76:1355-62.
16. Dasari BV, Neely D, Kennedy A, et al. The role of esophageal stents in the management of esophageal anastomotic leaks and benign esophageal perforations. Ann Surg 2014;259:852-60. Crossref
17. Horwitz B, Krevsky B, Buckman RF Jr, Fisher RS, Dabezies MA. Endoscopic evaluation of penetrating esophageal injuries. Am J Gastroenterol 1993;88:1249-53.
18. Ohtsu A, Boku N, Muro K, et al. Definitive chemoradiotherapy for T4 and/or M1 lymph node squamous cell carcinoma of the esophagus. J Clin Oncol 1999;17:2915-21.
19. Di Franco F, Lam PJ, Karat D, Hayes N, Griffin SM. Iatrogenic perforation of localized oesophageal cancer. Br J Surg 2008;95:837-9. Crossref
20. Jethwa P, Lala A, Powell J, McConkey CC, Gillison EW, Spychal RT. A regional audit of iatrogenic perforation of tumours of the oesophagus and cardia. Aliment Pharmacol Ther 2005;21:479-84. Crossref
21. Whyte RI, Iannettoni MD, Orringer MB. Intrathoracic esophageal perforation. The merit of primary repair. J Thorac Cardiovasc Surg 1995;109:140-4. Crossref
22. Wright CD, Mathisen DJ, Wain JC, Moncure AC, Hilgenberg AD, Grillo HC. Reinforced primary repair of thoracic esophageal perforation. Ann Thorac Surg 1995;60:245-8. Crossref
23. Lin Y, Jiang G, Liu L, et al. Management of thoracic esophageal perforation. World J Surg 2014;38:1093-9. Crossref
24. Richardson JD. Management of esophageal perforations: the value of aggressive surgical treatment. Am J Surg 2005;190:161-5. Crossref
25. Zhu RY, Law TT, Tong D, Tam G, Law S. Spontaneous circumferential intramural esophageal dissection complicated with esophageal perforation and esophageal-pleural fistula: a case report and literature review. Dis Esophagus 2016;29:872-9. Crossref
26. Johnson J, Schwegman CW, MacVaugh H III. Early esophagogastrectomy in the treatment of iatrogenic perforation of the distal esophagostomy. J Thorac Cardiovasc Surg 1956;32:827-31.
27. Hendren WH, Henderson BM. Immediate esophagectomy for instrumental perforation of the thoracic esophagus. Ann Surg 1968;168:997-1003. Crossref
28. Altorjay A, Kiss J, Vörös A, Szirányi E. The role of esophagectomy in the management of esophageal perforation. Ann Thorac Surg 1998;65:1433-6. Crossref
29. Orringer MB, Stirling MC. Esophagectomy for esophageal disruption. Ann Thorac Surg 1990;49:35-42. Crossref
30. Yeo CJ, Killemoe KD, Klein AS, Zinner MJ. Treatment of instrumental perforation of esophageal malignancy by transhiatal esophagectomy. Arch Surg 1988;123:1016-8. Crossref

A descriptive study of Lewy body dementia with functional imaging support in a Chinese population: a preliminary study

Hong Kong Med J 2017 Jun;23(3):222–30 | Epub 5 May 2017
DOI: 10.12809/hkmj166023
© Hong Kong Academy of Medicine. CC BY-NC-ND 4.0
 
ORIGINAL ARTICLE
A descriptive study of Lewy body dementia with functional imaging support in a Chinese population: a preliminary study
YF Shea, MRCP(UK), FHKAM (Medicine); LW Chu, MD, FRCP; SC Lee, BHS(Nursing)
Geriatrics Division, Department of Medicine, Queen Mary Hospital, Pokfulam, Hong Kong
 
Corresponding author: Dr YF Shea (elphashea@gmail.com)
 
 Full paper in PDF
 
Abstract
Introduction: Lewy body dementia includes dementia with Lewy bodies and Parkinson’s disease dementia. There have been limited clinical studies among Chinese patients with Lewy body dementia. This study aimed to review the presenting clinical features and identify risk factors for complications including falls, dysphagia, aspiration pneumonia, pressure sores, and mortality in Chinese patients with Lewy body dementia. We also wished to identify any difference in clinical features of patients with Lewy body dementia with and without an Alzheimer’s disease pattern of functional imaging.
 
Methods: We retrospectively reviewed 23 patients with Lewy body dementia supported by functional imaging. Baseline demographics, presenting clinical and behavioural and psychological symptoms of dementia, functional and cognitive assessment scores, and complications during follow-up were reviewed. Patients with Lewy body dementia were further classified as having an Alzheimer’s disease imaging pattern if functional imaging demonstrated bilateral temporoparietal hypometabolism or hypoperfusion with or without precuneus and posterior cingulate gyrus hypometabolism or hypoperfusion.
 
Results: The pre-imaging accuracy of clinical diagnosis was 52%. In 83% of patients, behavioural and psychological symptoms of dementia were evident. Falls, dysphagia, aspiration pneumonia, pressure sores, and death occurred in 70%, 52%, 26%, 26%, and 30% of patients, respectively with corresponding event rates per person-years of 0.32, 0.17, 0.18, 0.08, and 0.10. Patients with aspiration pneumonia compared with those without were more likely to have dysphagia (100% vs 35%; P=0.01). Deceased patients with Lewy body dementia, compared with alive patients, had a higher (median [interquartile range]) presenting Clinical Dementia Rating score (1 [1-2] vs 0.5 [0.5-1.0]; P=0.01), lower mean (± standard deviation) baseline Barthel index (13 ± 7 vs 18 ± 4; P=0.04), and were more likely to be prescribed levodopa (86% vs 31%; P=0.03). Patients with Lewy body dementia with an Alzheimer’s disease pattern of functional imaging, compared with those without the pattern, were younger at presentation (mean ± standard deviation, 73 ± 6 vs 80 ± 6 years; P=0.02) and had a lower Mini-Mental State Examination score at 1 year (15 ± 8 vs 22 ± 6; P=0.05).
 
Conclusions: Falls, dysphagia, aspiration pneumonia, and pressure sores were common among patients with Lewy body dementia. Those with an Alzheimer’s disease pattern of functional imaging had a younger age of onset and lower 1-year Mini-Mental State Examination score.
 
 
New knowledge added by this study
  • Behavioural and psychological symptoms of dementia were present in 83% of patients with Lewy body dementia (LBD).
  • Falls, dysphagia, aspiration pneumonia, and pressure sores were common complications in LBD patients.
  • Chinese LBD patients with an Alzheimer’s disease pattern of functional imaging had a younger age of onset and lower 1-year Mini-Mental State Examination score.
Implications for clinical practice or policy
  • Such information is useful in the formulation of a management plan, including advance care planning, for Chinese LBD patients.
 
 
Introduction
Lewy body dementia (LBD) includes dementia with Lewy bodies (DLB) and Parkinson’s disease dementia (PDD).1 Pathological hallmarks of LBD include α-synuclein neuronal inclusions (Lewy bodies and Lewy neurites) with subsequent neuronal loss.1 The difference between DLB and PDD lies in the sequence of onset of dementia and parkinsonism, although syndromes and pathological changes become similar with progression.1 2 Thus, they are regarded as a continuum instead of two separate entities. In western studies, approximately 10% to 15% of patients with dementia had DLB.1 In contrast, only 3% of 1532 patients with dementia followed up at the memory clinic of Queen Mary Hospital in Hong Kong had LBD (unpublished data). It is likely that LBD remains under-recognised among the Chinese population.
 
Compared with autopsy, sensitivity and specificity for clinical diagnosis of DLB have been reported to be 32% and 95%, respectively.1 In our memory clinic, 50% of DLB patients were initially misdiagnosed (mostly as Alzheimer’s disease [AD] in 75% of cases).3 There has been only one case series of 35 Chinese DLB patients and diagnosis was based mainly on clinical criteria.4 The presence of occipital hypometabolism on [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography (18FDG-PET) has a sensitivity of 90% and specificity of 71% to 80% in differentiating AD and DLB patients.5
 
Pathologies of AD are common in DLB patients; 35% of patients with Parkinson’s disease fulfil the pathological diagnostic criteria of AD, while deposition of amyloid plaques is present in approximately 85% of DLB patients.6 A meta-analysis revealed a positive amyloid scan in 57% and 35% of patients with DLB and PDD, respectively.5 A higher cortical amyloid burden has been associated with greater cortical and medial temporal lobe atrophy in LBD patients.6 Significant cortical amyloid burden may accelerate the cognitive decline in LBD patients, suggesting the possibility of a synergistic contribution of AD pathologies to LBD dementia.6 On 18FDG-PET, apart from bilateral occipital hypometabolism, some LBD patients also demonstrate an AD pattern of hypometabolism, ie temporoparietal, posterior cingulate gyrus or precuneus hypometabolism (Fig).7 In a recent study comparing 12 patients with DLB and an AD pattern of hypometabolism on 18FDG-PET with 11 patients with DLB and no AD pattern of hypometabolism, the former had a higher prevalence of visual hallucinations and extracampine hallucination.7 As far as we are aware, an AD pattern of functional imaging has not been studied in Chinese patients with DLB.
 
In contrast with AD, the clinical features of patients with DLB are unfamiliar to the general public. In a recent study that involved 125 carers of LBD patients, 82% to 96% expressed a wish to have information and support about visual hallucinations, changes in the brain and the body, and ways to cope with behavioural changes.8 Unfortunately clinical studies of LBD among the Chinese population are limited and none has examined the long-term outcomes of LBD, including falls, dysphagia, aspiration pneumonia, pressure sores, mortality, and behavioural and psychological symptoms of dementia (BPSD).
 
Based on a review of the clinical records of all LBD patients followed up in our memory clinic, the current study aimed to review the presenting clinical features and identify risk factors for long-term outcomes including falls, dysphagia, aspiration pneumonia, pressure sores, and mortality in Chinese patients with LBD. It was hoped that this would provide useful clinical information for carers of such patients. We also wished to identify any difference in clinical features of LBD patients with and without an AD pattern of functional imaging. We hypothesised that LBD patients with an AD pattern of functional imaging would have a young age at presentation or diagnosis due to concomitant AD pathologies.
 
Methods
This was a retrospective case series of Chinese LBD patients. The case records of Chinese patients with LBD who attended a memory clinic at Queen Mary Hospital between 1 January 2007 and 31 December 2015 were reviewed. This study was done in accordance with the principles outlined in the Declaration of Helsinki. Probable DLB was diagnosed according to McKeith criteria2 (Table 11 2). Probable PDD was diagnosed according to the following: the patient should meet the diagnostic criteria of Queen Square Brain Bank criteria with dementia developing in the context of established Parkinson’s disease with cognitive impairment in more than one domain and severe enough to impair daily life (Table 11 2). The differentiation between DLB and PDD was based on temporal sequence of symptoms—for DLB, dementia developed before or within 1 year of parkinsonism (ie the clinical syndrome characterised by tremor, bradykinesia, rigidity, and postural instability); for PDD, dementia developed more than 1 year after the established diagnosis of Parkinson’s disease.1 All patients underwent functional imaging in the form of 18FDG-PET or technetium-99m hexamethylpropylene amine oxime single-photon emission computed tomography (SPECT) that would show either hypometabolism or hypoperfusion of the occipital lobes, respectively. Data on baseline demographics, baseline and first-year Mini-Mental State Examination (MMSE) score,9 Clinical Dementia Rating (CDR) score,10 age-adjusted Charlson Comorbidity Index,11 baseline Neuropsychiatric Inventory (NPI) score,12 baseline Barthel index–20,13 presenting cognitive symptoms, and BPSD were derived from clinical records. ‘Time to diagnosis’ was defined as the difference between the date of first presentation to the memory clinic and the date of first diagnosis of LBD. Patients with DLB were further classified as having an ‘AD imaging pattern’ if the functional imaging demonstrated bilateral temporoparietal hypometabolism or hypoperfusion with or without precuneus and posterior cingulate gyrus hypometabolism or hypoperfusion (Fig).7 14
 

Table 1. Diagnostic criteria for DLB and PDD1 2
 

Figure. 18FDG-PET brain imaging of patients with LBD
(a) A patient with an AD pattern of hypometabolism over the bilateral temporoparietal and occipital lobes and posterior cingulate gyrus (arrows). (b) A patient without an AD pattern of hypometabolism; the hypometabolism occurred in mainly bilateral occipital lobes and mild hypometabolism over the bilateral parietal lobes (arrows)
 
Clinical outcomes including falls, dysphagia, aspiration pneumonia, development of pressure sores, and mortality were traced. For patients with a history of falls, geriatric day hospital (GDH) training was traced including the pre-/post-training Elderly Mobility Scale15 and Berg Balance Scale.16 Parkinsonism medication was often titrated at the GDH. Dysphagia was further subclassified as oral or pharyngeal according to the clinical assessment by a speech therapist (ST) or, if available, a video fluoroscopic swallowing study (VFSS).17 Penetration was defined as barium material entering the airway but not passing below the vocal cords; aspiration was defined as barium material passing below the level of the vocal cords.18 The locations of pressure sores and staging, according to National Pressure Ulcer Advisory Panel,19 were recorded. ‘Time to event’ was defined as the difference between the date of diagnosis and first appearance of these events.
 
Statistical analyses
Parametric variables were expressed as mean ± standard deviation and non-parametric variables were expressed by median (interquartile range [IQR]). Descriptive statistics were used to express the frequency of defining features of LBD. Chi squared test or Fisher’s exact test was used to compare categorical variables. Independent-samples t test or Mann-Whitney U test were used to compare continuous variables when appropriate. Statistical significance was inferred by a two-tailed P value of <0.05. All statistical analyses were carried out using the Statistical Package for the Social Sciences (Windows version 18.0; SPSS Inc, Chicago [IL], United States).
 
Results
Baseline demographics and clinical characteristics
There were 23 patients with LBD (16 with DLB and 7 with PDD). The mean age at presentation was 76 ± 7 years and the mean MMSE score at presentation was 19 ± 7 with a total duration of follow-up of 72 patient-years (mean follow-up, 1138 ± 698 days). The baseline demographics of the patients are summarised in Table 2. There was no statistically significant difference in baseline demographics between DLB and PDD patients. The time to diagnosis appeared to be longer but not statistically significant for PDD patients, possibly due to very small numbers in the two groups. The overall accuracy of diagnosis was 52%. Six (38%) of the 16 DLB patients were initially misdiagnosed as AD. The frequency of defining clinical characteristics of LBD among DLB and PDD patients is summarised in Table 3. There were no statistically significant differences (results not shown). Of note, 69% of DLB patients presented with parkinsonism and 74% of LBD patients had vivid visual hallucinations. Information about the content of visual hallucinations was available for 14 of 17 patients: 50% (n=7) involved persons, 7% (n=1) involved objects, 21% (n=3) a combination of persons and animals, 7% (n=1) a combination of insects and animal, 7% (n=1) a combination of insects and objects, and 7% (n=1) a combination of animal and objects. An NPI score was available for 78% (18/23) at baseline, of whom 83% (15/18) had a score of ≥1, and 78% (14/18) had at least one NPI subcategory rated as severe, ie ≥4. The three most common BPSD as indicated by a NPI score of ≥1 were visual hallucination (56%), anxiety (50%), and apathy (50%). There was no significant difference in BPSD in terms of NPI score for DLB and PDD patients (results not shown).
 

Table 2. Baseline demographics for patients with LBD
 

Table 3. Frequency of defining clinical characteristics of Lewy body dementia at the time of initial presentation
 
Falls
Of the patients, 16 (70%) had a total of 23 falls (all non-syncopal) with four complicated by bone fractures and two associated with intracerebral haemorrhage. The event rate was 0.32 per person-years. Ten patients underwent GDH training after their fall(s). The median time to first GDH training (from the time of diagnosis) was 56 (IQR, 56-663) days with a mean time of 93 ± 44 days. Paired-samples t test did not identify any significant pre-/post-training difference in Elderly Mobility Scale15 or Berg Balance Scale16 scores (10 ± 4 vs 11 ± 5, P=0.81 and 25 ± 13 vs 25 ± 14, P=1.0, respectively). Comparison of LBD patients with and without a fall history revealed no significant difference in clinical features (including visual hallucination, parkinsonism, and fluctuation of consciousness) or medication (including benzodiazepine or antipsychotics) [results not shown]. Parkinsonism was numerically more prevalent among fallers (88% vs 57%; P=0.14).
 
Dysphagia and aspiration pneumonia
Of the patients, six (26%) had a total of 13 episodes of pneumonia, and 12 (52%) had dysphagia. The mean time to first episode of aspiration pneumonia was 866 ± 689 days (median, 634; IQR, 315-1456 days; n=6) and to first diagnosis of dysphagia 951 ± 734 days (median, 862; IQR, 311-1624 days; n=12). Five patients underwent VFSS (time to VFSS: 831 ± 728; median, 723; IQR, 154-1562 days). Three of four patients with penetration developed aspiration pneumonia; both patients with aspiration on VFSS developed aspiration pneumonia. The event rates were 0.17 and 0.18 per person-years for dysphagia and aspiration pneumonia, respectively. Patients with LBD with a history of aspiration pneumonia compared with those without were more likely to have been identified by the ST to have dysphagia (100% vs 35%; P=0.01), oral dysphagia (83% vs 29%; P=0.04), pharyngeal dysphagia (83% vs 29%; P=0.04), or dysphagia that required Ryle’s tube insertion (67% vs 12%; P=0.02) [Table 4].
 

Table 4. Comparison of clinical features in LBD patients with and without aspiration pneumonia
 
Pressure sores
Six (26%) patients developed pressure sores with four over the sacrum and two over the heel (two in stage 1, two in stage 3, and two in stage 4). The mean time to development of pressure sore was 978 ± 599 days (median, 994; IQR, 379-1528 days). The event rate was 0.08 per person-years. A comparison between LBD patients with or without pressure sores did not identify any significant difference in clinical features (results not shown).
 
Mortality
Seven (30%) patients died of various diseases: three (43%) of pneumonia, two (29%) of unexplained cardiac arrest (UCA), and one (14%) each of pressure sore sepsis and choking. The mean time to death was 894 ± 617 days (median, 798; IQR, 312-1597 days). The event rate was 0.10 per person-years. Deceased patients with LBD, compared with alive patients, scored a higher presenting CDR (median [IQR]: 1 [1-2] vs 0.5 [0.5-1.0]; P=0.01), lower mean baseline Barthel index (13 ± 7 vs 18 ± 4; P=0.04), and were more likely to have been prescribed levodopa (86% vs 31%; P=0.03).
 
Alzheimer’s disease pattern of functional imaging
Of the patients, 19 underwent 18FDG-PET and four underwent perfusion SPECT imaging. Twelve patients (9 DLB and 3 PDD) had an AD pattern of functional imaging: all 12 had bilateral temporoparietal lobe hypometabolism/hypoperfusion; three patients concomitantly had hypoperfusion/hypometabolism over the posterior cingulate gyrus and one patient had additional hypometabolism over the precuneus. Patients with LBD with an AD pattern of functional imaging compared with those without were younger at presentation (73 ± 6 vs 80 ± 6 years; P=0.02) and had a lower MMSE score at 1 year (15 ± 8 vs 22 ± 6; P=0.05). There was no difference in the presentation of visual hallucination between the two groups of patients (Table 5).
 

Table 5. Comparison of clinical features in LBD patients with and without Alzheimer’s disease pattern of hypoperfusion/hypometabolism on SPECT or 18FDG-PET
 
Discussion
An accurate diagnosis of LBD is important. It allows prescription of acetylcholinesterase inhibitors or avoidance of antipsychotics in view of the risk of neuroleptic sensitivity. An overall accuracy of clinical diagnosis of 52% in our study is similar to findings in western studies, eg 62% by a neurologist.20 Our results reveal that no single diagnostic criteria or test is infallible and the diagnosis needs follow-up review and support from functional imaging when appropriate. In our series, 38% of DLB patients were initially misdiagnosed as AD. This is thought to have been related to the presence of amnesia in all patients at initial presentation: only 69% of DLB patients presented with parkinsonism. There was no difference in the clinical features of DLB and PDD patients. Braak et al21 have proposed a pathological staging of Parkinson’s disease with Lewy body pathology starting in the dorsal IX/X motor nucleus or adjoining intermediate reticular zone, and spreading rostrally in the brainstem then to the limbic system and subsequently to the neocortex with the underlying mechanism being the spread of α-synuclein from cell to cell. This might explain why DLB and PDD can progress and later overlap clinically.
 
Compared with the previous literature review of Chinese LBD case reports (1980-2012) by Han et al4 including 31 DLB and four PDD patients with a younger mean age of onset (67 ± 10 years), more patients in our series presented with cognitive decline (100% vs 60%), parkinsonism (78% vs 9%), visual hallucinations (74% vs 9%), and rapid eye movement sleep behaviour disorder (48% vs 11%). These differences may be related to the heightened awareness of the core features of LBD among Chinese doctors in recent years or because patients in our series presented at a more advanced stage of dementia (Han et al4 did not state the severity of dementia). Nonetheless, both case series reported similar rates of postural hypotension (9% vs 3%) and BPSD (83% vs 86%).4 The rate of postural hypotension in both case series is much lower than that reported in other literature on DLB patients, ie 50%.22 The lower rates of postural hypotension may be related to under-recognition. Similar to our findings, in a study of 22 Chinese DLB patients (mean age, 74 ± 8 years; mean MMSE score, 16 ± 7; mean NPI score, 24 ± 16), three most commonly observed BPSDs were visual hallucinations (86%), delusions (64%), and anxiety (59%); total NPI score was an independent predictor of caregiver burden (odds ratio=1.537; P=0.048).22 Clinicians should pay particular attention to BPSD, particularly visual hallucinations and anxiety symptoms, when managing Chinese LBD patients.
 
In addition, falls, dysphagia, and pressure sores can contribute to carer stress but they were not included in previous studies of LBD patients.23 24 Nearly 70% of our LBD patients experienced falls. This rate is greater than the previously reported rates of 11% to 44%.25 26 Although visuospatial impairment, cognitive fluctuation, parkinsonism, or visual hallucinations were proposed as possible mechanisms that contributed to falls, only parkinsonism was identified in one study of 51 AD and 27 DLB patients as an independent risk factor.25 26 Because of the limited sample size, no significant risk factors could be identified in our series. With regard to the finding of limited improvement in mobility after GDH training, it is likely that many factors affect the mobility of LBD patients. These factors include dementia, postural hypotension, and poor balance from disease. Clinicians should alert carers of the risk of falls and offer advice about general measures for falls prevention, including addressing environmental risk factors and use of safety alarms. Compared with Londos et al’s finding17 that 29% of 82 LBD patients (median age, 77 years; median MMSE score, 20) had dysphagia on VFSS, we reported a higher rate of 52%. When identified by STs, LBD patients and their carers should be given advice about diet modification (eg use of thickeners) and postural changes (eg chin tuck). In addition, clinicians should titrate the levodopa dose as far as possible.27
 
Given that LBD is an irreversible neurodegenerative disease, advance care planning (ACP) forms a major part of care.28 Our data for dysphagia, aspiration pneumonia, pressure sores, and mortality can offer useful information during ACP for Chinese LBD patients. Since those patients who have died had a higher presenting CDR score, lower Barthel Index, and greater usage of levodopa (which probably reflects more severe parkinsonism), ACP should be initiated earlier in LBD patients with these features. It has been reported that LBD patients can have UCA and in our series two (28.6%) patients died of UCA. Unexplained cardiac arrest is proposed to be related to pathological involvement of the intermediolateral columns of the spinal cord, autonomic ganglia, and sympathetic neurons, affecting either respiration or heart rhythm.29 Such risk of UCA should be explained during ACP. Presence of hypometabolism/hypoperfusion over the temporoparietal lobes/precuneus/posterior cingulate gyrus was used as surrogate markers of concomitant AD pathologies in our LBD patients. As far as we are aware, this is the first study to show that concomitant AD pathologies among Chinese LBD patients can result in an early age of presentation or diagnosis and lower MMSE score at 1 year. Our findings provide further evidence of the synergistic contribution of AD pathologies to LBD dementia.6
 
This study has several limitations. It was a single-centre retrospective case series, therefore, we considered clinical features only as present or absent when clearly stated as such. This might have affected our results. Pathological diagnosis was not obtained including pathological proof of concomitant AD pathologies. Since all subjects were recruited from the memory clinic, LBD patients who present to a psychiatric clinic may be different, eg with more BPSD or visual hallucinations. The severity of parkinsonism was not graded so the influence of parkinsonism on long-term outcomes such as falls or aspiration pneumonia was not fully analysed. Although our case series comprised the largest number of Chinese patients with LBD supported by functional imaging, the number remained limited. Our findings should be confirmed by a larger study with Pittsburgh compound B imaging to delineate the concomitant presence of amyloid plaques.
 
Conclusions
Falls, dysphagia, aspiration pneumonia, and pressure sores were common among LBD patients. Lewy body dementia patients with an AD pattern of neuroimaging had an earlier age of diagnosis or presentation and lower 1-year MMSE scores. Such information is useful in the formulation of a management plan for Chinese LBD patients.
 
Declaration
All authors have disclosed no conflicts of interest.
 
References
1. Walker Z, Possin KL, Boeve BF, Aarsland D. Lewy body dementias. Lancet 2015;386:1683-97. Crossref
2. McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology 2005;65:1863-72. Crossref
3. Shea YF, Ha J, Lee SC, Chu LW. Impact of 18FDG PET and 11C-PIB PET brain imaging on the diagnosis of Alzheimer’s disease and other dementias in a regional memory clinic in Hong Kong. Hong Kong Med J 2016;22:327-33.
4. Han D, Wang Q, Gao Z, Chen T, Wang Z. Clinical features of dementia with lewy bodies in 35 Chinese patients. Transl Neurodegener 2014;3:1. Crossref
5. Valkanova V, Ebmeier KP. Neuroimaging in dementia. Maturitas 2014;79:202-8. Crossref
6. Gomperts SN. Imaging the role of amyloid in PD dementia and dementia with Lewy bodies. Curr Neurol Neurosci Rep 2014;14:472. Crossref
7. Chiba Y, Fujishiro H, Ota K, et al. Clinical profiles of dementia with Lewy bodies with and without Alzheimer’s disease-like hypometabolism. Int J Geriatr Psychiatry 2015;30:316-23. Crossref
8. Killen A, Flynn D, De Brún A, et al. Support and information needs following a diagnosis of dementia with Lewy bodies. Int Psychogeriatr 2016;28:495-501. Crossref
9. Chiu FK, Lee HC, Chung WS, Kwong PK. Reliability and validity of the Cantonese version of Mini-Mental State Examination: a preliminary study. J Hong Kong Coll Psychiatr 1994;4(2 Suppl):S25-8.
10. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993;43:2412-4. Crossref
11. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373-83. Crossref
12. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 1994;44:2308-14. Crossref
13. Collin C, Wade DT, Davies S, Horne V. The Barthel ADL Index: a reliability study. Int Disabil Stud 1988;10:61-3. Crossref
14. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7:263-9. Crossref
15. Smith R. Validation and reliability of the Elderly Mobility Scale. Physiotherapy 1994;80:744-7. Crossref
16. Berg KO, Wood-Dauphinee SL, Williams JI, Maki B. Measuring balance in the elderly: validation of an instrument. Can J Public Health 1992;83 Suppl 2:S7-11.
17. Londos E, Hanxsson O, Alm Hirsch I, Janneskog A, Bülow M, Palmqvist S. Dysphagia in Lewy body dementia—a clinical observational study of swallowing function by videofluoroscopic examination. BMC Neurol 2013;13:140. Crossref
18. Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia 1996;11:93-8. Crossref
19. National Pressure Ulcer Advisory Panel. NPUAP pressure injury stages. Available from: http://www.npuap.org/resources/educational-and-clinical-resources/npuap-pressure-injury-stages/. Accessed 7 May 2016.
20. Galvin JE. Improving the clinical detection of Lewy body dementia with the Lewy body composite risk score. Alzheimers Dement (Amst) 2015;1:316-24. Crossref
21. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24:197-211. Crossref
22. Takemoto M, Sato K, Hatanaka N, et al. Different clinical and neuroimaging characteristics in early stage Parkinson’s disease with dementia and dementia with Lewy bodies. J Alzheimers Dis 2016;52:205-11. Crossref
23. Liu S, Jin Y, Shi Z, et al. The effects of behavioral and psychological symptoms on caregiver burden in frontotemporal dementia, Lewy body dementia, and Alzheimer’s disease: clinical experience in China. Aging Ment Health 2016 Feb 16:1-7. Epub ahead of print. Crossref
24. Leggett AN, Zarit S, Taylor A, Galvin JE. Stress and burden among caregivers of patients with Lewy body dementia. Gerontologist 2011;51:76-85. Crossref
25. Imamura T, Hirono N, Hashimoto M, et al. Fall-related injuries in dementia with Lewy bodies (DLB) and Alzheimer’s disease. Eur J Neurol 2000;7:77-9. Crossref
26. Kudo Y, Imamura T, Sato A, Endo N. Risk factors for falls in community-dwelling patients with Alzheimer’s disease and dementia with Lewy bodies: walking with visuocognitive impairment may cause a fall. Dement Geriatr Cogn Disord 2009;27:139-46. Crossref
27. Alagiakrishnan K, Bhanji RA, Kurian M. Evaluation and management of oropharyngeal dysphagia in different types of dementia: a systematic review. Arch Gerontol Geriatr 2013;56:1-9. Crossref
28. Jethwa KD, Onalaja O. Advance care planning and palliative medicine in advanced dementia: a literature review. BJPsych Bull 2015;39:74-8. Crossref
29. Molenaar JP, Wilbers J, Aerts MB, et al. Sudden death: an uncommon occurrence in dementia with Lewy bodies. J Parkinsons Dis 2016;6:53-5. Crossref

Pages