Introduction

Contrast-enhanced computed tomographic (CT) scans are being performed daily for many reasons. They are especially useful for the evaluation of patients with acute chest symptoms because myocardial infarction, pulmonary embolism, and aortic dissection have overlapping clinical presentations. Indeed, advances in technology and the introduction of multidetector CT scan have enabled better evaluation of the heart. Yet, the potential risks to the cardiovascular system of using a bolus injection of contrast medium, although rare, should not be ignored or underrated. Here, we report a rare case of complicated left ventricular free wall rupture after a single bolus injection of contrast medium during a CT study in an elderly woman with acute myocardial infarction. Such a case has not been reported in the literature to date. This should alert us to the potential, if rare, complications that use of a bolus injection of contrast medium may induce, and lead to more cautious use of contrast medium in patients with acute myocardial infarction.

Case report

An 85-year-old woman, with a history of good past health, was admitted to hospital for right lower abdominal pain. The abdominal pain was mild and she did not require any analgesia. On physical examination, she had a low-grade fever but was otherwise stable with normal vital signs. Her blood pressure remained within normal limits (systolic pressure: 130 mm Hg and diastolic pressure: 55 mm Hg). On abdominal palpation, mild tenderness was elicited in the right lower quadrant. Her initial blood tests (a full blood count, liver and renal function tests, and a serum amylase level) were unremarkable. A provisional diagnosis of diverticulitis or early appendicitis was made and she was treated with intravenous antibiotics. Two days later, her abdominal discomfort persisted despite resolution of her fever, so an urgent CT scan of the abdomen and pelvis was arranged to seek the underlying cause.

While awaiting the CT scan, a repeated blood screen was performed and revealed elevated cardiac enzymes, with a creatine kinase level of 211 U/L (reference range, 42-190 U/L) and lactate dehydrogenase level of 477 U/L (211-370 U/L). Her serum troponin I level was also elevated at 3.7 ng/mL (reference level, <0.060 ng/mL). An electrocardiogram was performed and showed ST segment elevation and T wave inversion in the anterolateral leads, confirming an acute myocardial infarction.

The patient was then sent for an urgent CT study. She remained well during the initial non-contrast scanning period but developed a sudden cardiac arrest immediately after an intravenous bolus injection of 80 mL non-ionic water-soluble contrast at a rate of 3 mL/sec during the contrast-scanning phase. Resuscitation commenced at once. A review of the...
images showed that caecal diverticulitis accounted for the patient's symptoms. The major concern, however, was the normal-looking myocardium and pericardium seen during the non-contrast phase (Fig 1) complicated by rupture of the left ventricular free wall with active contrast extravasation (Fig 2a) and haemopericardium (Fig 2b) during the contrast phase. Such dramatically different findings indicated that the bolus contrast injection induced myocardial rupture. Because the patient had developed cardiac tamponade, an urgent ultrasound-guided pericardiocentesis was performed and fresh blood was drained out. She did not respond to resuscitation, however, and finally died 1 hour afterward.

Discussion
Myocardial rupture is commonly divided into three major subgroups: rupture of the papillary muscle, the interventricular septum, and the free wall. Acute rupture of the free wall is the most common type of rupture, comprising more than 50% of all ruptures, and accounts for 10% of in-hospital deaths following acute myocardial infarction. Rupture of the papillary muscle and interventricular septum are less frequent, accounting for 8% and 16% respectively. Being female, having hypertension, diabetes, angina, and previous myocardial infarction are all risk factors for ruptured myocardial death, with prolonged and recurrent chest pain being the most frequent and consistent clinical characteristic.

Myocardial rupture usually occurs between 3 and 6 days or within 2 weeks after the infarction, typically
involving the anterior or lateral wall, in the terminal region of the left anterior descending coronary artery distribution. Rupture of the left ventricular free wall usually leads to haemopericardium and death from cardiac tamponade, which can be acute (acute tear leading to immediate death) or subacute (slow and incomplete tear leading to late rupture). Non-ionic water-soluble iodinated contrast is the agent of choice for performing contrast CT studies. Iodinated contrast medium can cause a wide range of complications. Well-documented potential cardiovascular complications include hypotension, bradycardia, arrhythmias and conduction disturbances, probably via vasovagal reactions, a direct negative inotropic effect on the myocardium and peripheral vasodilatation.

Our case has demonstrated that a single bolus injection of contrast medium can induce myocardial rupture in patients with acute myocardial infarction, which, to the best of our knowledge, has not been reported in the literature to date. It is difficult to be certain of the pathogenesis, especially when there have been a significant number of past studies using CT to evaluate acute myocardial infarction or ruptured myocardium using contrast-enhanced CT scans, and contrast is routinely used during cardiac catheterization for patients suffering from myocardial infarction. We postulate that the large volume of contrast injected at a rapid rate via the mechanical power injector may have generated a pressure necessary. Therefore, a single bolus injection of contrast can increase left ventricular pressure to a degree theoretically able to rupture infarcted myocardium. This single report raises the possibility of this rare complication of use of contrast-medium injection during a CT study and should warn us to use it cautiously in patients with acute myocardial infarction.

Although successful surgical intervention using rapid pericardiocentesis, volume expansion and immediate surgery using cardiopulmonary bypass has been reported, treatment should be directed towards prevention of rupture due to its lethal nature. Therefore, the potential risks of intravascular administration of contrast medium must be weighed against the potential benefits and thoroughly discussed with the patient beforehand. It is important to identify individuals for whom there is an increased risk of such an adverse event and to search for an alternative investigative modality where necessary.

References