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A B S T R A C T 

Introduction: We aimed to develop a machine 
learning (ML) model to predict the risk of 
coronavirus disease 2019 (COVID-19) among three-
dose BNT162b2 vaccine recipients in Hong Kong.
Methods: A total of 304 individuals who had received 
three doses of BNT162b2 were recruited from three 
vaccination centres in Hong Kong between May and 
August 2021. The dataset was randomly divided into 
training (n=184) and testing (n=120) sets in a 6:4 ratio. 
Demographics, co-morbidities and medications, 
blood tests (complete blood count, liver and renal 
function tests, glycated haemoglobin level, lipid 
profile, and presence of  hepatitis B surface antigen), 
and controlled attenuation parameter (CAP) were 
used to develop six ML models (logistic regression, 
linear discriminant analysis, random forest, naïve 
Bayes, neural network [NN], and extreme gradient 
boosting models) to predict COVID-19 risk. Model 
performance was assessed using area under the 
receiver operating characteristic curve (AUC), 
sensitivity, specificity, and positive predictive value 
(PPV) and negative predictive value (NPV).
Results: Among the study population (median age: 
50.9 years [interquartile range=43.6-57.8]; men: 
30.9% [n=94]), 27 participants (8.9%) developed 
COVID-19 within 6 months. Fifteen clinical 
variables were used to train the models. The NN 
model achieved the best performance, with an AUC 
of 0.74 (95% confidence interval [95% CI]=0.60-
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Introduction
The severe acute respiratory syndrome coronavirus 
2 pandemic has been a global health crisis, resulting 
in substantial morbidity and mortality worldwide, 
with over 13 billion vaccine doses administered.1 
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To mitigate the risk of breakthrough infections 
by dominant Omicron variants, a third-dose 
booster following two doses of BNT162b2 vaccine 
(BioNTech-Pfizer, Mainz, Germany) has been rolled 
out. Compared with a two-dose schedule, a third 
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0.88). Using the optimal cut-off value based on the 
maximised Youden index, sensitivity, specificity, 
PPV, and NPV were 90% (95% CI=55%-100%), 58% 
(95% CI=48%-68%), 16% (95% CI=8%-29%), and 98% 
(95% CI=92%-100%), respectively. The top predictors 
in the NN model include age, prediabetes/diabetes, 
CAP, alanine aminotransferase level, and aspartate 
aminotransferase level.
Conclusion: An NN model integrating 15 clinical 
variables effectively identified individuals at low risk 
of COVID-19 following three doses of BNT162b2.

This article was 
published on 23 Jun 
2025 at www.hkmj.org.

This version may differ 
from the print version.

New knowledge added by this study
•	 A neural network model is a useful tool that effectively predicts coronavirus disease 2019 (COVID-19) risk in 

individuals who have received three doses of the BNT162b2 vaccine.
•	 Metabolic risk factors, including prediabetes/diabetes, non-alcoholic fatty liver disease, and steatohepatitis, play 

key roles in vaccine immunogenicity.
Implications for clinical practice or policy
•	 Clinicians can use the model to identify high-risk patients for booster doses and preventive strategies.
•	 Our findings can guide targeted educational campaigns and resource allocation by identifying demographic and 

clinical factors associated with higher COVID-19 risk despite vaccination.
•	 The identification of key variables such as age, prediabetes/diabetes, and liver enzyme levels can prompt further 

studies to understand the underlying mechanisms and to develop more effective interventions.
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機器學習模型預測香港接種三劑BNT162b2疫苗
的人士於六個月內感染新冠肺炎的情況
陳景童、張瑞琦、陳國雄、覃健、孔繁毅、張嘉盛

引言：本研究旨在開發一個機器學習模型，以預測香港接種三劑復必

泰疫苗（BNT162b2）的人士於六個月內感染新冠肺炎的風險。

方法：本研究於2021年5月至8月期間，從三間疫苗接種中心招募共
304名已接種三劑BNT162b2疫苗的人士。資料集按6:4比例隨機分為
訓練組（n=184）及測試組（n=120）。本研究收集了參加者的人口
統計資料、共病情況與藥物使用、血液檢查（包括全血計算、肝腎功

能測試、糖化血紅素水平、血脂分析及乙型肝炎表面抗原檢測）以及

受控衰減參數，開發了六種機器學習模型（邏輯回歸、線性判別分

析、隨機森林、朴素貝葉斯、神經網絡及極限梯度提升模型）來預測

參加者感染新冠肺炎的風險。模型效能以接收者操作特徵曲線下面積

（AUC）、敏感度、特異度、陽性預測值及陰性預測值進行評估。

結果：304名參加者中（年齡中位數：50.9歲［四分位距：43.6- 
57.8］；男性：94人［30.9%］），共有27人（8.9%）在六個月內確診
新冠肺炎。本研究以15項臨床變數訓練該六種機器學習模型，當中以
神經網絡模型表現最佳，AUC為0.74（95%置信區間=0.60-0.88）。 
我們採用以最大約登指數確定的最佳臨界值，其敏感度、特異度、

陽性預測值及陰性預測值分別為90%（95%置信區間=55%-100%）、 
58%（95%置信區間= 48%-68%）、16%（95%置信區間=8%-29%）及
98%（95%置信區間=92%-100%）。在神經網絡模型中，最強預測因
素包括年齡、糖尿病前期／糖尿病、受控衰減參數、丙氨酸轉氨酶水

平及天門冬氨酸轉氨酶水平。

結論：本研究所建立的神經網絡模型整合了15項臨床變數，能有效辨
識接種三劑 BNT162b2後罹患新冠肺炎風險較低的人士。

dose significantly reduces the risk of infection, 
hospitalisation, and severe disease.2,3 However, 
waning anti-Omicron neutralising antibody 
and T cell responses have been reported even 
after the booster dose,4 and sustained long-term 
immunogenicity remains uncertain.
	 Advanced machine learning (ML) algorithms, 
such as random forest, artificial neural network 
(NN), and gradient boosting, have been increasingly 
utilised to develop prognostic models that can 
identify individuals at high risk of coronavirus disease 
2019 (COVID-19). These models offer potential 
to improve risk stratification and inform targeted 
prevention and intervention strategies. Numerous 
studies have demonstrated the development of 
such models, which integrate various clinical, 
demographic, and routine laboratory variables to 
predict risks of COVID-19, hospitalisation, and 
mortality.5-9 However, these previous studies did 
not stratify patients by vaccination status, leading 
to heterogeneous cohorts of both vaccinated and 
unvaccinated individuals. This may introduce 
limitations and biases in model performance, given 
that vaccination status can substantially affect 
COVID-19 risk and disease severity.10,11

	 This study focused on individuals who had 
received three doses of BNT162b2, aiming to identify 
the ML algorithm with optimal performance for 
predicting COVID-19 risk using clinically available 
data. We also sought to identify key predictors used 
by the model to stratify individuals who may be more 
susceptible to COVID-19 despite vaccination.

Methods
Study design and study population
This multi-centre, prospective cohort study recruited 
individuals aged 18 years or above who had received 
three doses of BNT162b2 vaccine from three 
vaccination centres in Hong Kong, namely, Sun Yat Sen 
Memorial Park Sports Centre, Queen Mary Hospital, 
and Sai Ying Pun Jockey Club Polyclinic, between 
May and August 2021. Participants volunteered 
for the study after being informed through flyers 
and announcements at the vaccination sites. All 
participants were screened by a trained research 
assistant using a checklist form (online Appendix) 
to confirm no active COVID-19 case or a history 
of the disease. Exclusion criteria included prior 
COVID-19 infection identified through serological 
testing for antibodies to the nucleocapsid protein 
of severe acute respiratory syndrome coronavirus 
2, gastrointestinal surgery, inflammatory bowel 
disease, immunocompromised status (including 
post-transplantation, use of immunosuppressants, or 
receipt of chemotherapy), other medical conditions 
(malignancy, haematological, rheumatological or 
autoimmune diseases), and fewer than 14 days 
between the booster dose and either the study 
endpoint or the date of COVID-19 diagnosis.
	 Demographic and clinical information—
including age, sex, body mass index (BMI), waist-
to-hip ratio, smoking status, alcohol use, co-
morbidities (hypertension, diabetes mellitus, and 
prediabetes), and recent medication use within 6 
months of vaccination (proton pump inhibitors, 
statins, metformin, antibiotics,12 antidepressants, 
steroids, probiotics or prebiotics)—was collected. 
Additional data included blood pressure; blood 
test results (complete blood count, liver and renal 
function tests,13 glycated haemoglobin [HbA1c] 
level, lipid profile, and presence of hepatitis B surface 
antigen); controlled attenuation parameter (CAP) to 
measure liver fat14; and liver stiffness measured by 
transient elastography15 using FibroScan (Echosens, 
Paris, France). We also cross-checked the Hospital 
Authority’s database (eg, Clinical Management 
System) to verify participants’ co-morbidity 
conditions.
	 The primary outcome was COVID-19. All 
participants were prospectively followed from the 
date of their third vaccine dose until either a COVID-
19 diagnosis or the end of the study (18 May 2022), 
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whichever occurred first. Monthly follow-ups were 
conducted via phone calls or messages to inquire 
about participants’ COVID-19 status, especially 
during the fifth COVID-19 outbreak in Hong Kong 
in early 2022,16 when face-to-face meetings were not 
recommended. Participants were also instructed 
to notify the study team if they tested positive. 
COVID-19 diagnosis was based on self-reported 
symptoms followed by either a rapid antigen test or 
deep throat saliva reverse transcription polymerase 
chain reaction test.

Model development
This was a binary classification task using supervised 
learning algorithms, aiming to predict COVID-19 
status after three vaccine doses. Predicted outcomes 
were labelled as ‘0’ (negative) or ‘1’ (positive). The 
dataset was randomly divided into training and 
validation sets in a 6:4 ratio.
	 Data preprocessing included three steps: 
missing data imputation, feature engineering, and 
data transformation. First, variables with more 
than 20% missing data were dropped because high 
levels of missingness can hinder the accuracy and 
reliability of imputation methods.17,18 Remaining 
missing values were imputed using the MICE 
(Multivariate Imputation by Chained Equations) 
package in R software (version 4.2.1, R Foundation 
for Statistical Computing, Vienna, Austria). Second, 
new features were extracted from existing variables 
(ie, transforming numerical variables into categorical 
groups and combining similar variables). Third, 
continuous variables were standardised through 
centring and scaling, whereas categorical variables 
were processed using one-hot encoding to ensure 
data compatibility for different ML algorithms.
	 Feature selection involved correlation analysis 
between variables and the dependent variable, the 
Boruta package in R,19 literature review, and expert 
consultation. A total of 37 variables were selected 
and ranked based on their overall importance using 
the aforementioned methods. Male sex, age ≥60 
years, hepatitis B virus surface antigen positivity, 
diabetes/prediabetes, and recent medication use 
(antibiotics, proton pump inhibitors, probiotics/
prebiotics, metformin, statins) were regarded as 
categorical variables (online supplementary Table 1).
	 Six frequently used supervised ML models 
were selected: logistic regression, linear discriminant 
analysis, random forest, naïve Bayes, NN, and 
extreme gradient boosting (XGBoost) [online 
supplementary Table 2]. Due to the imbalance in the 
dataset, with relatively few COVID-19 cases, multiple 
models were explored to assess different strategies 
for handling class imbalance. Hyperparameter 
tuning was performed using the caret package in 
R with grid search (3p grid size, where p represents 
the number of hyperparameters) and three-fold 

cross-validation. The dataset was divided into three 
equal subsets: the model trained on two subsets and 
validated on the third; the process was repeated five 
times, with the validation subset rotated each time. 
Hyperparameters yielding the highest area under 
the receiver operating characteristic curve (AUC) 
on the validation set were selected. A loop function 
was implemented to iteratively train the model while 
removing a single variable from the end of the ranked 
list of variables. By evaluating model performance 
with different variable combinations, we identified 
the most predictive variables.
	 A sensitivity analysis was conducted by 
excluding variables not routinely available in clinical 
practice (eg, CAP and liver stiffness).

Evaluation and comparison of model 
performance
To compare the performance of the ML models, 
we calculated AUCs and used DeLong’s test to 
assess statistical significance among the AUCs. We 
estimated the best cut-off point for each model 
using the Youden index, selecting the threshold that 
maximised the sum of sensitivity and specificity. 
Using these cut-off points, we calculated performance 
metrics including sensitivity, specificity, positive 
predictive value (PPV), negative predictive value 
(NPV), positive likelihood ratio (PLR), and negative 
likelihood ratio (NLR) to identify the best model. 
We also compared the miss rate (false negative 
rate) across models. Given the imbalanced nature 
of the dataset, precision-recall curves and F1 scores 
were used. Higher F1 scores indicate better balance 
between precision and recall.
	 All statistical analyses were conducted using 
R, with packages such as caret, randomForest, 
naivebayes, nnet, xgboost, pROC, and 
SHAPforxgboost for model building, evaluation, 
and interpretation. The DTComPair package 
was used to compare performance metrics.20 
Continuous variables were summarised as medians 
and interquartile ranges (IQRs), with comparisons 
performed using the Wilcoxon rank-sum test. 
Categorical variables were presented as counts 
and percentages, and compared using Pearson’s 
Chi squared test or Fisher’s exact test, applying 
Bonferroni correction for multiple comparisons. 
SHapley Additive exPlanations (SHAP) analysis was 
utilised to interpret complex models by generating 
SHAP values to determine feature impact.

Results
Patient characteristics
A total of 304 three-dose BNT162b2 recipients 
were identified between May and August 2021 (Fig 
1a). The median age was 50.9 years (IQR=43.6-
57.8), and 94 participants (30.9%) were men. Over 
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a median follow-up of 2.6 months (IQR=1.8-3.1; 
up to 5.1 months), 27 participants (8.9%) tested 
positive for COVID-19. The dataset was randomly 
split into training and testing sets, comprising 184 
(60.5%) and 120 (39.5%) participants, respectively. 
Table 1 summarises baseline characteristics, 
stratified by the outcome of interest (COVID-19 
status) and by training and testing sets. Baseline 
characteristics prior to imputation are shown in 
online supplementary Table 3.
	 The COVID-19-positive patients had worse 
medical conditions than those tested negative. 
Specifically, they were older (with a higher proportion 
aged ≥60 years: 22.2% vs 16.2%), predominantly 
male (33.3% vs 30.7%), had greater liver fat content 
(median CAP: 249.0 dB/m vs 227.0 dB/m), and 
were more frequently diagnosed with prediabetes/
diabetes (55.6% vs 38.3%). Both the training 
and testing sets had a comparable proportion of  
COVID-19–positive cases (8.3-9.2%). Most 
independent variables were similarly distributed 
between sets (P>0.05), although CAP differed 
significantly (Table 1).

Performance of different machine learning 
models
We trained six different ML algorithms on the training 
set to predict COVID-19. Model performance was 
evaluated using three-fold cross-validation (Fig 1b). 
Concerning the testing set, performance metrics 
for each model are reported in Table 2 and AUCs 
are summarised in Figure 2. A comparison of AUCs 
between training and testing sets for the six ML 
models is presented in online supplementary Figure 
1. All models showed a slight decrease in AUC from 
the training to the testing set, indicating some degree 
of overfitting. Notably, the NN model did not exhibit 
a significant AUC reduction, suggesting it was less 
susceptible to overfitting than other models.
	 Of the six ML models evaluated, the NN 
algorithm performed best (AUC: 0.74, 95% CI=0.60-
0.88), followed by XGBoost (AUC: 0.62, 95% 
CI=0.42-0.82) [Fig 2]. Using the optimal cut-off 
value estimated by the maximum Youden index, 
performance metrics are summarised in Table 2. 
The 2×2 confusion matrix tables, which summarise 
the numbers of true positives, true negatives, false 
positives, and false negatives for each model’s 
predictions, are shown in online supplementary 
Table 4. Multiple comparisons between the NN and 
other models in terms of performance metrics are 
presented in online supplementary Table 5.
	 The NN and linear discriminant analysis 
models achieved the highest sensitivity, with values 
of 90% (95% CI=55%-100%) and 80% (95% CI=44%-
97%), respectively. The random forest model had the 
best specificity (72%, 95% CI=62%-80%). The NN 
model also had the highest NPV (98%, (95% CI=92%-

FIG 1.  Machine learning model development. (a) Participant selection process. (b) 
Model development and validation on the testing set
Abbreviations: AUC = area under the receiver operating characteristic curve; 
COVID-19 = coronavirus disease 2019; LDA = linear discriminant analysis; LR = 
logistic regression; NB = naïve Bayes; NLR = negative likelihood ratio; NN = neural 
network; NPV = negative predictive value; PLR = positive likelihood ratio; PPV = 
positive predictive value; RF = random forest; XGBoost = extreme gradient boosting

Individuals who received BNT162b2 vaccine from 
vaccination centres between May and August 2021

n=556

n=313

n=304
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n=184
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•	 Feature engineering
•	 Data transformation
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Abbreviations: BMI = body mass index; CAP = controlled attenuation parameter; COVID-19 = coronavirus disease 2019; eGFR using CKD-EPI = estimated 
glomerular filtration rate using creatinine equation from the Chronic Kidney Disease Epidemiology Collaboration; GI surgery = gastrointestinal surgery; 
HbA1c = glycated haemoglobin; HBsAg = hepatitis B surface antigen; HDL = high-density lipoprotein; LDL = low-density lipoprotein
*	 Data are shown as No. (%) or median (interquartile range)
†	 Fisher’s exact test, Pearson’s Chi squared test and Wilcoxon rank-sum test
‡	 Recent drug usage within 6 months prior to vaccination

TABLE 1.  Baseline participant characteristics based on the status of coronavirus disease 2019 and train-test dataset (n=304)*

COVID-19 status Train-test dataset

Negative (n=277) Positive (n=27) P value† Training set (n=184) Testing set (n=120) P value†

Demographics

Age ≥60 y 45 (16.2%) 6 (22.2%) 0.422 28 (15.2%) 23 (19.2%) 0.368

Male sex 85 (30.7%) 9 (33.3%) 0.776 62 (33.7%) 32 (26.7%) 0.195

BMI, kg/m2 23.0 (20.7-25.3) 23.7 (21.8-27.4) 0.209 23.2 (20.7-25.4) 22.6 (20.7-24.7) 0.310

Waist-to-hip ratio 0.9 (0.8, 0.9) 0.9 (0.8, 0.9) 0.025 0.9 (0.8-0.9) 0.8 (0.8-0.9) 0.147

Smoking 0.714 0.540

Non-smoker 243 (87.7%) 23 (85.2%) 164 (89.1%) 102 (85.0%)

Current smoker 17 (6.1%) 2 (7.4%) 11 (6.0%) 9 (7.5%)

Ex-smoker 17 (6.1%) 2 (7.4%) 9 (4.9%) 9 (7.5%)

Alcohol use 0.447 0.788

Non-drinker 245 (88.4%) 26 (96.3%) 163 (88.6%) 109 (90.8%)

Current drinker 30 (10.8%) 1 (3.7%) 20 (10.9%) 10 (8.3%)

Ex-drinker 2 (0.7%) 0 1 (0.5%) 1 (0.8%)
Medical data/co-morbidities

CAP, dB/m 227.0 (201.0-264.0) 249.0 (232.5-269.5) 0.026 233.0 (203.0-270.2) 224.5 (198.0-254.2) 0.042

Liver stiffness, kPa 4.3 (3.5-5.3) 4.7 (4.0-5.3) 0.147 4.3 (3.5-5.2) 4.3 (3.6-5.4) 0.885

Hypertension 46 (16.6%) 3 (11.1%) 0.591 29 (15.8%) 20 (16.7%) 0.834

Pre-diabetes/diabetes 106 (38.3%) 15 (55.6%) 0.080 75 (40.8%) 46 (38.3%) 0.673

GI surgery 10 (3.6%) 0 0.608 5 (2.7%) 5 (4.2%) 0.523
Blood tests

Haemoglobin, g/dL 13.6 (12.7-14.4) 13.5 (12.6-14.5) 0.596 13.7 (12.8-14.5) 13.4 (12.7-14.3) 0.209

White blood cells, ×109/L 5.7 (4.8-6.8) 5.7 (4.6-6.2) 0.740 5.6 (4.8-6.8) 5.8 (4.8-6.9) 0.732

Platelets, ×109/L 252.0 (218.0-290.0) 238.0 (227.5-280.0) 0.597 241.5 (216.8-287.2) 259.0 (229.0- 299.2) 0.111

Neutrophils, absolute, ×109/L 3.2 (2.4-4.0) 3.1 (2.5-3.7) 0.561 3.1 (2.4-4.0) 3.2 (2.5-4.1) 0.592

Lymphocytes, absolute, ×109/L 1.8 (1.5-2.1) 1.9 (1.6-2.2) 0.250 1.8 (1.5-2.1) 1.9 (1.5-2.1) 0.457

Creatinine, µmol/L 67.0 (59.0-79.0) 66.0 (56.0-81.5) 0.984 66.0 (59.0-80.0) 67.0 (58.0-78.0) 0.880

eGFR using CKD-EPI, unit 90.0 (84.0-90.0) 90.0 (81.0-90.0) 0.304 90.0 (87.0-90.0) 90.0 (81.0-90.0) 0.062

Albumin, g/L 46.0 (44.0-47.0) 46.0 (44.0-47.0) 0.692 46.0 (44.0-47.0) 46.0 (44.0-47.0) 0.275

Globulin, g/L 30.0 (28.0-32.0) 30.0 (28.5-33.0) 0.493 30.0 (28.0-32.0) 30.0 (28.0-32.0) 0.712

Bilirubin, µmol/L 10.0 (7.0-12.0) 9.0 (7.0-11.0) 0.461 10.0 (7.0-12.0) 9.0 (7.0-12.0) 0.218

Alkaline phosphatase, total, U/L 64.0 (54.0-79.0) 64.0 (51.5-72.0) 0.361 63.5 (54.0-79.0) 66.5 (54.0-78.0) 0.850

Alanine aminotransferase, U/L 19.0 (15.0-26.0) 22.0 (17.0-30.5) 0.154 19.5 (15.0-28.0) 19.0 (15.0-24.0) 0.143

Aspartate aminotransferase, U/L 22.0 (19.0-26.0) 23.0 (20.0-26.5) 0.405 23.0 (19.0-26.0) 22.0 (19.0-26.0) 0.479

Gamma-glutamyl transferase, U/L 21.0 (16.0-32.0) 19.0 (17.0-40.5) 0.605 21.0 (16.0-35.2) 19.5 (16.0-28.0) 0.244

Fasting glucose, mmol/L 5.1 (4.7-5.4) 5.2 (4.8-5.4) 0.455 5.1 (4.7-5.5) 5.1 (4.7-5.4) 0.483

HbA1c, % 5.5 (5.3-5.7) 5.7 (5.4-5.9) 0.113 5.5 (5.3-5.8) 5.6 (5.3-5.7) 0.783

Triglycerides, mmol/L 0.9 (0.7-1.3) 1.0 (0.8-1.4) 0.524 0.9 (0.7-1.3) 0.9 (0.7-1.2) 0.510

Total cholesterol, mmol/L 4.9 (4.3-5.5) 5.0 (4.0-5.7) 0.995 5.0 (4.4-5.6) 4.8 (4.1-5.4) 0.299

Cholesterol, HDL, mmol/L 1.6 (1.4-1.9) 1.5 (1.3-1.8) 0.111 1.6 (1.4-1.9) 1.7 (1.4-1.9) 0.129

Cholesterol, LDL, mmol/L 2.8 (2.3-3.2) 3.0 (2.2-3.2) 0.440 2.8 (2.3-3.2) 2.7 (2.2-3.1) 0.106

HBsAg-positive 17 (6.1%) 3 (11.1%) 0.403 7 (3.8%) 13 (10.8%) 0.016
Medications‡

Proton pump inhibitor 35 (12.6%) 4 (14.8%) 0.762 20 (10.9%) 19 (15.8%) 0.206

Antibiotics 25 (9.0%) 4 (14.8%) 0.307 13 (7.1%) 16 (13.3%) 0.069

Probiotics and prebiotics 8 (2.9%) 0 >0.999 4 (2.2%) 4 (3.3%) 0.717

Statin 35 (12.6%) 5 (18.5%) 0.374 23 (12.5%) 17 (14.2%) 0.674

Metformin 13 (4.7%) 3 (11.1%) 0.160 9 (4.9%) 7 (5.8%) 0.719

Antidepressant 11 (4.0%) 0 0.607 8 (4.3%) 3 (2.5%) 0.536
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100%) and the best likelihood ratios (PLR: 2.15,  
95% CI=1.59-2.91; NLR: 0.17, 95% CI=0.03-1.11) 
[Table 2]. It classified 45.8% of participants as high 
risk for COVID-19, with a miss rate or false negative 
rate of 10% (Table 3). Precision-recall curves 
and F1 scores for all models are shown in online 
supplementary Figure 2, offering a more precise 

evaluation of model performance in the context of 
an imbalanced dataset. With a precision baseline 
of 0.092, naïve Bayes and random forest models 
recorded AUC values of around 0.10, reflecting 
modest discrimination ability under class imbalance. 
The NN model achieved an F1 score of 0.277, 
highlighting a better balance between precision and 
recall.

Crucial risk factors associated with 
coronavirus disease 2019 in the neural 
network model
According to the best-performing model (the NN 
model), the five most important predictors of 
COVID-19 risk were CAP, alanine aminotransferase 
level, age (≥60 years), presence of prediabetes/
diabetes, and aspartate aminotransferase (AST) 
level, with relative importance values of 14.9%, 
10.1%, 9.4%, 8.4%, and 7.9%, respectively (Fig 3). 
These were further confirmed by SHAP analysis, 
a method specifically compatible with ensemble 
algorithms (ie, XGBoost) that quantifies the 
contribution of each input variable to the model’s 
prediction. When SHAP analysis was applied to the 
second best-performing model (XGBoost), leading 
variables remained similar to those in the NN model, 
except for BMI which ranked highest in importance 
(with a mean absolute SHAP value of 0.992) in the 
XGBoost model (online supplementary Fig 3). The 
SHAP analysis in online supplementary Figure 3b 
also provided deeper insights into the contribution 
of each variable to the model’s prediction. Among 
leading variables in the XGBoost model, higher CAP 
(red dots), lower BMI (blue dots), and age ≥60 years 
(red dots) had a positive impact (right side of the 
plot) on COVID-19 prediction. In terms of high-
density lipoprotein (HDL) and AST levels, the SHAP 
plot showed a wide distribution with mixed colours, 
suggesting that HDL and AST levels had diverse 
impacts on COVID-19 prediction.

TABLE 2.  Performance metrics of different machine learning models

AUC (95% CI) Sensitivity 
(95% CI)

Specificity 
(95% CI)

PPV (95% CI) NPV (95% CI) PLR (95% CI) NLR (95% CI)

LR 0.45 (0.28-0.64)* 60% (26%-88%) 50% (40%-60%)* 10% (4%-20%) 93% (84%-98%) 1.20 (0.70-2.06) 0.80 (0.37-1.75)

LDA 0.54 (0.35-0.72) 80% (44%-97%) 37% (28%-47%)* 10% (5%-19%)* 95% (84%-99%) 1.28 (0.91-1.79)* 0.54 (0.15-1.90)

RF 0.54 (0.33-0.74) 50% (19%-81%) 72% (62%-80%)* 14% (5%-29%) 94% (87%-98%) 1.77 (0.89-3.53) 0.70 (0.37-1.31)

NB 0.57 (0.36-0.78) 70% (35%-93%) 61% (51%-70%) 14% (6%-27%) 96% (88%-99%) 1.79 (1.12-2.86) 0.49 (0.19-1.28)

NN 0.74 (0.60-0.88) 90% (55%-100%) 58% (48%-68%) 16% (8%-29%) 98% (92%-100%) 2.15 (1.59-2.91) 0.17 (0.03-1.11)

XGBoost 0.62 (0.42-0.82) 70% (35%-93%) 55% (45%-64%) 12% (5%-24%) 95% (87%-99%) 1.54 (0.98-2.43) 0.55 (0.21-1.44)

Abbreviations: 95% CI = 95% confidence interval; AUC = area under the receiver operating characteristic curve; LDA = linear discriminant analysis; LR = 
logistic regression; NB = naïve Bayes; NLR = negative likelihood ratio; NN = neural network; NPV = negative predictive value; PLR = positive likelihood ratio; 
PPV = positive predictive value; RF = random forest; XGBoost = extreme gradient boosting
*	 P values ≤0.01 compared with the NN model

FIG 2.  Receiver operating characteristic curves of different machine learning 
models using the testing set
Abbreviations: AUC = area under the receiver operating characteristic curve; 
XGBoost = extreme gradient boosting
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Sensitivity analysis excluding non-routine 
clinical variables
Excluding CAP and liver stiffness, XGBoost 
achieved the best performance (AUC: 0.66, 95% 
CI=0.50-0.82), followed by naïve Bayes, logistic 
regression, linear discriminant analysis, random 
forest, and NN models (AUCs: 0.49- 0.63) [online 
supplementary Fig 4]. The top five predictors in the 
XGBoost model were BMI, alanine aminotransferase 

level, HDL level, HbA1c level, and age ≥60 years 
(online supplementary Fig 5). In the NN model, the 
top predictors were AST level, HbA1c level, HDL 
level, hepatitis B virus antigen positivity, and alanine 
aminotransferase level (online supplementary Fig 6).

Discussion
In this study involving three-dose BNT162b2 
recipients, the NN model achieved satisfactory 
performance in predicting COVID-19 using baseline 
clinical data. The leading predictors identified were 
age ≥60 years, presence of prediabetes/diabetes, 
CAP, alanine aminotransferase level, and AST 
level, highlighting the need for vigilance among 
fully vaccinated individuals, especially those with 
concomitant co-morbidities.
	 Advanced age, prediabetes/diabetes, and 
abnormal liver condition (ie, high fatty liver 
content and abnormal liver function test results) 
were significant predictors of high infection risk, 
consistent with previous studies.21-25 A meta-analysis 
of 18 studies revealed a higher prevalence of diabetes 
(11.5%) among hospitalised COVID-19 patients21 
compared to the general population (9.3%).26 Studies 
have found that the presence of preexisting diabetes 
or hyperglycaemia is associated with higher risks 
of severe illness, mortality, and complications 
in COVID-19 patients.22,23 This elevated risk is 
likely due to impaired immune function, chronic 
inflammation, and common cardiovascular and 

TABLE 3.  Number and proportion of predicted positive cases 
of coronavirus disease 2019 and miss rates or false negative 
rates by different machine learning models (n=120)*

Predicted 
positive 

COVID-19 
cases

Miss rate or 
false negative 
rate based on 
this prediction

Logistic regression 61 (50.8%) 40%

Linear discriminant analysis 77 (64.2%)† 20%

Random forest 36 (30.0%) 50%

Naïve Bayes 50 (41.7%) 30%

Neural network 55 (45.8%) 10%

Extreme gradient boost 57 (47.5%) 30%

Abbreviation: COVID-19 = coronavirus disease 2019
*	 Data are shown as No. (%) or %
†	 P values ≤0.01 compared with the neural network model

FIG 3.  Relative importance of risk factors in predicting the risk of coronavirus disease 2019 by the neural network model
Abbreviations: BMI = body mass index; HbA1c = glycated haemoglobin; HBsAg = hepatitis B surface antigen
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metabolic co-morbidities in diabetic patients.27,28 
Individuals with liver diseases or abnormal liver 
function test results also exhibit higher risks of 
severe COVID-19 and complications.24,25

	 This study is among the few that have developed 
ML models to predict COVID-19 in recipients of 
three doses of BNT162b2. No prior studies have 
developed COVID-19 prognostic models with 
clear information on vaccination status, type, 
and number of doses. A study from Hong Kong11 

showed that a timely third vaccine dose strongly 
protected against Omicron BA.2 variant infections, 
the dominant strain in Hong Kong during our study 
period. The effectiveness of vaccination against 
infection declined over time after two doses but was 
restored to a high level after a third dose, resulting in 
significantly lower risks of infection, hospitalisation, 
and severe illness compared with those who 
received only two doses.2,3 By including only three-
dose vaccinated patients in the development of ML 
models, the resulting models may be more accurate 
in predicting COVID-19 risk and severity among 
vaccinated individuals. This can be particularly 
important in settings where vaccination rates are 
high and breakthrough infections are a concern; it 
may help identify individuals with higher infection 
risk who could benefit from additional precautions 
or interventions.

Strengths and limitations
Our study offers practical value by enabling risk 
stratification, allowing healthcare providers to 
focus resources on higher-risk populations. It 
informs public health strategies by identifying 
factors associated with increased COVID-19 risk 
despite vaccination, guiding targeted campaigns and 
resource allocation. Additionally, an understanding 
of risk predictors in vaccinated individuals supports 
tailored booster strategies. The identification of key 
variables such as age, prediabetes/diabetes, and liver 
enzyme levels also encourages further research into 
underlying mechanisms and potential interventions.
	 However, this study had some limitations.  
First, the small sample size (~300 participants) may 
affect model performance and generalisability. The 
dataset size was constrained by specific inclusion 
criteria, but this represented the maximum size 
available for model training. We believe that selection 
of high-quality data maximises training efficacy. 
Second, we did not include gut microbiota data, 
which may be associated with COVID-19 vaccine 
immunogenicity.29 A focus on readily available 
clinical data facilitates practical and clinically relevant 
predictive models. Third, our dataset exhibited 
significant class imbalance, such that only 8.9% of 
participants developed COVID-19 within 6 months. 
Whereas receiver operating characteristic curve 
analysis provides an optimistic assessment, we also 

used precision-recall curves and F1 scores for a more 
realistic evaluation. Fourth, although missing values 
for certain variables might introduce error into the 
prediction models, the small percentage of missing 
data and the use of multiple imputation likely had 
minimal impact on model accuracy. Fifth, COVID-19  
cases were self-reported and confirmed by either 
rapid antigen or polymerase chain reaction tests. In 
Hong Kong, rapid antigen tests have a false negative 
rate of approximately 15% (sensitivity: 85%)30 but 
a high specificity of 99.93%,30 indicating very few 
false positives. Although some cases may have gone 
unreported or untested, we believe that the majority 
adhered to testing requirements as mandated 
by law. Additionally, we did not grade infection 
severity, and there were no hospitalised cases in our 
cohort, limiting our ability to predict hospitalisation 
outcomes in this study. Sixth, the NN model—our 
best-performing model—is complex and has low 
interpretability. We used a variable importance plot 
to visualise and identify the most influential features, 
enhancing its practical application. It should be noted 
that the other models demonstrated suboptimal 
performance, with AUCs below 0.7. The NN model’s 
superior performance is likely due to its ability to 
capture complex patterns and interactions. Simpler 
models struggled with the dataset’s complexity, class 
imbalance, non-linear relationships, and outliers. 
Finally, although this study offers insights into the 
use of advanced ML models to predict COVID-19 
outcomes, its generalisability is limited. Overfitting 
remains a concern despite mitigation techniques (eg, 
regularisation, pruning, and ensemble methods). 
The complexity of our models and the dataset hinder 
generalisability. Variability in vaccines, booster 
intervals, doses, demographics, and study design 
further impacts the generalisability of our model. 
Future studies should include diverse populations 
and vaccine types to enhance applicability. External 
validation of our results in other centres is also 
warranted.

Conclusion
The NN model is a useful tool for identifying 
individuals at low risk of COVID-19 within 6 months 
after receiving three doses of BNT162b2. Key 
features selected by the model highlight the central 
role of metabolic risk factors (prediabetes/diabetes, 
non-alcoholic fatty liver disease, and steatohepatitis) 
in vaccine immunogenicity.
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