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Introduction
Myopia is highly prevalent among Asian children 
and adolescents, with over 600 million individuals 
affected in China, signifying a ‘myopia boom’.1,2 
Moreover, 21.9% of these individuals exhibit high 
myopia (HM).3 High myopia can gradually progress 
to posterior staphyloma and maculopathy, leading to 
the diagnosis of pathological myopia, a leading cause 
of blindness in young people.4,5

	 Artificial intelligence (AI), particularly deep 
learning (DL), which is widely applied in image 
classification, has attracted global interest in recent 
years.6 Given its capacity to analyse massive amounts 
of data, DL may offer a solution to the growing 
myopia burden.6 However, training DL models from 
scratch requires substantial computing and memory 
resources, as well as vast volumes of labelled 
datasets.7 For specific myopia cases, large annotated 
datasets are not always available.7 Furthermore, the 
creation of such datasets is both time-consuming 
and costly.7

	 Transfer learning (TL) has been introduced 
as an alternative method for training DL models.7 
In DL, a model’s knowledge is typically stored in its 
trained weights.7 These weights, established after 
extensive training on a comprehensive dataset, 
assist in recognising data patterns relevant to the 
target problem.7 Transfer learning is a fine-tuning 
approach in which the weights of a pre-trained 
model for an upstream AI task are transferred to 
another AI model to achieve optimal performance 
on a similar downstream task using a smaller, task-
specific dataset.7 This method enables a new model to 
reuse knowledge previously learned from a different 
task (source domain) to improve its performance 
in the new target task.8 Because the model already 
possesses some knowledge related to the new task, it 
can learn more efficiently from a smaller dataset and 
fewer training epochs.7 Therefore, TL is considered 
a promising approach for overcoming dataset size 
limitations in the myopia field, while also improving 
AI training time and performance.9 By reviewing 
how TL has been implemented in myopic AI  
(online supplementary Table),15-20 we aim to highlight 
how TL has reshaped the landscape of myopic 
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practice, as well as the continuing challenges it  
faces.

Current challenges associated with 
myopic practice and conventional 
deep learning developed for 
myopia
At present, substantial challenges in the myopic 
field persist regarding diagnostic and predictive 
medicine.10 First, there is a considerable screening 
burden for myopia.10 Myopia, particularly vision-
threatening complications such as macular hole and 
choroidal neovascularisation (CNV), is preventable 
but not curable; mass screening with regular follow-
up remains the most effective strategy.10 However, 
the insufficient number of ophthalmologists makes 
large-scale population screening and monitoring 
coverage unfeasible.10 Second, it is difficult to 
accurately predict the risk of myopia progression.10 
The absence of a reliable risk prediction model 
for HM and pathological myopia, coupled with 
individual variability in progression, makes timely 
and customised intervention challenging.10 Finally, 
ophthalmologists still lack a comprehensive 
understanding of myopia pathophysiology.10 Many 
factors that influence myopia, including genetics, 
environment, and lifestyle, are difficult to assess with 
precision.10 Morphological changes in myopic eyes 
also remain poorly defined.10

	 Although conventional DL models built on 
single-field fundus photographs (FPs) may assist 
with FP-based screening, prognostication, and 
exploration of myopia pathogenesis, these models 
have substantial limitations. They often fail to detect 
peripheral retinal lesions, such as lattice degeneration 
and retinal breaks, due to the restricted field of 
view within FPs (50°).11 Additionally, they struggle 
to identify posterior staphylomas, a hallmark of 
pathological myopia, when solely relying on two-
dimensional FPs.11 The limited resolution and poor 
contrast between retinal tissues and the underlying 
choroid also hinder AI-based analysis of myopic 
foveoschisis on FPs.11 Artificial intelligence models 
developed using ultra-widefield (UWF) retinal 
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imaging and optical coherence tomography (OCT) 
may provide greater accuracy in detecting and 
characterising morphological changes associated 
with myopia.11 This enhanced accuracy arises 
because UWF images capture a broader retinal field 
(200°), while OCT images deliver excellent depth 
resolution for the visualisation of myopic lesions, 
such as myopic traction maculopathy and posterior 
staphylomas.11,12

	 However, UWF and OCT images present 
comparable challenges when utilised for DL 
applications. Ground truth–labelled UWF images 
remain scarce in the myopic field because manually 
annotating the morphological features of myopia is 
more difficult in high-resolution UWF images than 
in simple FPs.13 The available labelled UWF images 
are often insufficient for conventional DL, which 
requires large datasets for training.13 Similarly, a 
substantial volume of annotated OCT images for 
myopia is not readily available, given that OCT image 
annotation is tedious, costly, and time-consuming; 
it also requires specialised expertise.14 The limited 
availability of large datasets of UWF and OCT images 
for myopia has hampered the development of DL 
models for screening, prediction, and pathological 
examination. Transfer learning has addressed this 
challenge by enabling AI model training using small 
numbers of UWF and OCT images, while allowing 
the resulting models to achieve high accuracy in 
myopia-related tasks.

Transfer learning for myopic 
screening
Transfer learning has been instrumental in the 
development of robust screening tools for myopic 
maculopathy and vision-threatening conditions 
such as macular holes, despite the limited number 
of annotated OCT images available. He et al15 
employed a cross-domain TL strategy to create a 
myopic maculopathy screening tool. They utilised 
the model parameters and weights obtained by 
a deep residual network extensively trained on 
the large ImageNet dataset (millions of images), 
then fine-tuned the network using a limited set of 
OCT images during retraining.15 The TL model 
ultimately achieved a high area under the receiver 
operating characteristic curve of 0.986, an accuracy 
of 96.04%, and a quadratic-weighted kappa of 0.940 
in diagnosing various myopic maculopathies.15 
Notably, the TL model outperformed a bespoke 
DL model created using the same limited set of 
OCT training images.15 In another study, Li et al16 
employed TL to develop a screening tool for vision-
threatening conditions (retinoschisis, macular hole, 
retinal detachment, and CNV) in patients with HM. 
Despite the limited number of OCT images available, 
the TL-retrained model achieved high area under 

the receiver operating characteristic curve values for 
all four conditions (0.961 to 0.999) by leveraging the 
weights generated during pretraining on the robust 
ImageNet dataset.16 The model demonstrated high 
specificities (>90%) and sensitivities comparable to 
or exceeding those of retina specialists.16 The high 
levels of screening accuracy and sensitivity attained 
through TL highlight its potential to support large-
scale, standardised screening and monitoring of 
myopic patients at the community level, thereby 
facilitating early detection of fundus changes and 
enabling timely intervention before irreversible 
vision loss (online supplementary Table).

Transfer learning for myopic 
prognostication and refractive 
error prediction
Transfer learning has also substantially contributed 
to myopic prognostication and refractive error 
prediction. Oh et al17 applied TL to develop an 
AI-based axial length prediction model using 
restricted UWF images of myopes. By utilising the 
robustly trained weights obtained during ImageNet 
pretraining, the model predicted axial length with 
a low mean absolute error of 0.744 mm and an 
R2 value of 0.815.17 The UWF image model also 
achieved a higher R2 value than two earlier FP-based 
axial length prediction models (R2=0.59 and 0.67, 
respectively).17 Transfer learning has thus improved 
the accuracy of axial length estimation beyond that 
of current predictive DL algorithms, with potential 
to enhance prognosis and progression forecasts 
for myopic patients, particularly in paediatric and 
adolescent populations. Meanwhile, Jain et al18 
employed TL to predict uncorrected refractive 
error, primarily varying levels of myopia, based 
on a limited set of OCT images from an ethnically 
distinct Indian cohort. Transfer learning enabled 
the model to achieve strong predictive performance 
in this data-constrained population by domain 
adaptation and fine-tuning, using the weights of the 
ResNet50 architecture pretrained on a large Korean 
OCT dataset.18 Despite the small Indian dataset (60 
eyes), the model estimated spherical equivalent and 
keratometry values with a mean absolute error as 
low as 1.58 dioptres. These findings demonstrate the 
ability of TL to accurately predict varying degrees of 
myopia in patients, as well as its potential to increase 
the applicability of myopic models across diverse 
populations (online supplementary Table).

Transfer learning for myopic 
pathogenesis investigation
Finally, TL has substantially advanced 
ophthalmologists’ understanding of the pathogenesis 
and morphological changes associated with 
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myopia. Mao et al19 employed TL to investigate 
the morphological characteristics of retinal vessels 
on UWF photographs of high myopes. Despite the 
limited number of UWF images available (50 images), 
the TL-retrained model achieved a segmentation 
accuracy of 98.24% for retinal vessels by leveraging 
robust feature extraction for blood vessels and the 
blood vessel segmentation ability developed during 
pretraining on a larger regular FP dataset (380 FPs).19 
This TL model has aided ophthalmologists in gaining 
deeper insight into the progressive pathophysiology 
of HM and the vascular changes that accompany 
disease progression.19 The study also reported 
that increased vessel density and reduced vascular 
branching are risk factors for CNV in patients with 
HM.19 This finding enables the identification of high 
myopes at risk of CNV, allowing them to be closely 
monitored for timely intervention; thus, it redefines 
the current approach to predictive and personalised 
treatment in myopia. In another study, Chen et al20  
applied TL to evaluate the association between 
choroidal thickness and myopia progression. Using 
pretrained weights from the large-scale Common 
Objects in Context database, the mask region–
based convolutional neural network model achieved 
excellent performance in choroidal segmentation 
and quantification on a limited set of OCT images, 
with errors of 6.72 ± 2.12 µm and 13.75 ± 7.57 µm  
for choroidal inner and outer boundary 
segmentation, respectively.20 Transfer learning may 
thus be particularly valuable in examining more 
complex morphological alterations, such as those 
occurring in the choroidal regions, during myopia 
progression (online supplementary Table).

Transfer learning’s benefits, 
challenges, and future directions
Transfer learning has demonstrated strong 
potential in providing highly precise screening, 
risk prediction, and pathophysiological studies of 
myopia by enabling AI to perform accurate, fine-
grained analysis of myopic lesions through advanced 
imaging modalities such as OCT and UWF. Transfer 
learning eliminates the need for large volumes 
of annotated training OCT and UWF images. 
Additionally, it shortens training time and lowers 
computing requirements, substantially decreasing 
backpropagation calculations by reusing components 
of an already trained model (eg, model weights and 
parameters). Furthermore, TL has been shown to 
enhance DL model accuracy because pretrained 
networks have reliably learned to recognise a broad 
range of patterns and features from large, diverse 
image sets (eg, ImageNet). When applied to limited 
sets of UWF and OCT images, this prior knowledge 
improves accuracy and reduces model overfitting, 
which is otherwise likely due to the small size and 
specificity of these datasets.

	 Nonetheless, the implementation of TL for 
myopic tasks presents several challenges. Although 
the large ImageNet dataset has been valuable for 
deriving robust model parameters and weights, 
concerns remain regarding whether the more 
complex anatomical structures in ophthalmic imaging 
are adequately represented in ImageNet’s natural 
images, given the distinctive differences between 
medical and natural image domains. ImageNet-
pretrained networks may not consistently transfer 
optimally to real-world myopic tasks. Moreover, TL 
has been described as advantageous in elevating the 
performance of myopic AI, but many studies have 
not provided baseline ML models for comparison 
to clearly demonstrate its performance-enhancing 
benefits.17-20 Finally, similar to conventional DL, 
TL decision-making remains difficult to interpret, 
leading to concerns about transparency and ethical 
aspects, including the risk of sensitive information 
leakage from source domains in fine-tuned TL 
models.
	 In the future, performing systematic 
transferability assessments between source and 
target domains, improving TL benchmarking 
against baseline DL models or ophthalmologists, 
and incorporating interpretability solutions (eg, 
saliency maps) along with data privacy–preserving 
approaches (eg, federated learning) may help ensure 
the development and deployment of effective and 
safe TL models for myopic tasks.
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