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A B S T R A C T 

Introduction: The use of artificial intelligence (AI) 
to identify acute intracranial haemorrhage (ICH) 
on computed tomography (CT) scans may facilitate 
initial imaging interpretation in the accident 
and emergency department. However, AI model 
construction requires a large amount of annotated 
data for training, and validation with real-world 
data has been limited. We developed an algorithm 
using an open-access dataset of CT slices, then 
assessed its utility in clinical practice by validating 
its performance on CT scans from our institution.
Methods: Using a publicly available international 
dataset of >750 000 expert-labelled CT slices, we 
developed an AI model which determines ICH 
probability for each CT scan and nominates five 
potential ICH-positive CT slices for review. We 
validated the model using retrospective data from 
1372 non-contrast head CT scans (84 [6.1%] with 
ICH) collected at our institution.
Results: The model achieved an area under the 
curve of 0.842 (95% confidence interval=0.791-0.894; 
P<0.001) for scan-based detection of ICH. A pre-
specified probability threshold of ≥50% for the 
presence of ICH yielded 78.6% accuracy, 73% 

Artificial intelligence for detection of intracranial 
haemorrhage on head computed tomography 

scans: diagnostic accuracy in Hong Kong
Jill M Abrigo*, Ka-long Ko, Qianyun Chen, Billy MH Lai, Tom CY Cheung, Winnie CW Chu, Simon CH Yu

Introduction
Head computed tomography (CT) scans constitute 
the main imaging investigation during the evaluation 
of trauma and stroke; they are also important in the 
initial work-up of headache and other non-specific 
neurological complaints. In Prince of Wales Hospital 
of Hong Kong alone, >25 000 head CT scans were 
performed in 2019 during the clinical management 
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of patients who presented to the Accident and 
Emergency Department. Computed tomography 
scans are composed of multiple cross-sectional 
images (ie, slices), which may be challenging to 
interpret. Typically, these scans are initially reviewed 
by frontline physicians prior to assessment by 
radiologists, and delays during the review process 
can be substantial. Thus, the timely recognition of 
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sensitivity, 79% specificity, 18.6% positive predictive 
value, and 97.8% negative predictive value. There 
were 62 true-positive scans and 22 false-negative 
scans, which could be reduced to six false-negative 
scans by manual review of model-nominated CT 
slices.
Conclusion: Our model exhibited good accuracy in 
the CT scan–based detection of ICH, considering 
the low prevalence of ICH in Hong Kong. Model 
refinement to allow direct localisation of ICH will 
facilitate the use of AI solutions in clinical practice.

New knowledge added by this study
• A deep learning–based artificial intelligence model trained on an international dataset of computed 

tomography (CT) slices exhibited good accuracy in the detection of intracranial haemorrhage (ICH) on CT 
scans in Hong Kong.

• Considering the 6% prevalence of ICH in our institution, and using a pre-specified probability threshold of 
≥50%, the model detected 74% of ICH-positive scans; this outcome improved to 93% via manual review of 
model-nominated images.

Implications for clinical practice or policy
• Considering the expected clinical applications, model refinement is needed to improve diagnostic performance 

prior to additional tests in a clinical setting.
• Our model may facilitate assessment of CT scans by physicians with different degrees of experience in ICH 

detection, an important aspect of real-world clinical practice. 
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應用人工智能探測頭部電腦斷層掃描圖像上的 
顱內出血：香港的診斷準確度

Jill M Abrigo、高家朗、陳倩云、賴銘曦、張智欣、朱昭穎、 
余俊豪

引言：應用人工智能技術探測電腦掃描圖像上的顱內出血，能夠幫助

於急症室內進行初步影像學篩查。然而，構建人工智能模型需要大量

標記數據作訓練用途，而且其準確性也有待臨床真實數據驗證。本研

究利用電腦掃描切片的公開數據集開發了一種人工智能演算法，並使

用本院的電腦掃描數據驗證，評估算法的臨床效用。

方法：通過使用超過750 000份國際專家標記的電腦掃描公開數據集，
我們開發訓練了一個人工智能模型來計算每張電腦掃描圖像上的顱內

出血概率，並同時提供五張潛在顱內出血的影像切片以進行影像專家

審查。本院共採集了1372份平掃頭部電腦掃描圖像用於驗證人工智能
模型性能，其中84份（6.1%）有顱內出血。

結果：模型就探測掃描圖像上顱內出血所得到的曲線下方面積為0.842
（95%置信區間=0.791-0.894，P<0.001）。以預設概率≥50%為顱內
出血閾值，得到模型準確度為78.6%、敏感性73%、特異性79%、陽性
預測值18.6%和陰性預測值97.8%。其中有62份影像為真陽性，22份
影像為假陰性，在通過對模型提供的影像進行影像專家審查後，假陰

性影像數量降為6份。

結論：鑒於顱內出血在香港的患病率較低，我們模型對於探測電腦掃

描圖像上顱內出血顯示出良好的準確度。改良模型可以直接定位顱內

出血位置，將促進人工智能解決方案在臨床上的應用。

an acute finding, such as intracranial haemorrhage 
(ICH), is limited by the competence and availability 
of frontline physicians.
 The presence and location or type of ICH 
impacts the next clinical step, which can be further 
imaging investigations, medical management, or 
surgical intervention.1 Furthermore, a confirmation 
of ICH absence can also be useful in clinical 
management. For example, it can facilitate safe 
discharge from the hospital when appropriate; in 
patients with acute stroke, the absence of ICH is 
an important exclusion criterion that influences 
treatment selection.2

 The use of artificial intelligence (AI) for ICH 
detection is a topic with global relevance considering 
its diagnostic impact and ability to optimise 
workflow, both of which have high practical value.3,4 
In the accident and emergency department, AI can 
facilitate ICH detection in head CT scans during 
times when a radiologist is unavailable. Although 
there have been multiple reports of deep learning 
methods with high accuracy in the detection of ICH, 
the models in those reports were developed using 
in-house labelled training datasets and validated 
using a limited number of cases.3,5-8 Recently, the 
Radiological Society of North America (RSNA) 
publicly released >25 000 multi-centre head CT scans 
with slices that have been labelled with or without 
ICH by experts.9 Here, we developed a model using 
this RSNA dataset, then validated its performance 
on CT scans from our institution to determine its 
potential for clinical application in Hong Kong.

Methods
Ethical considerations
This study was approved by the Joint Chinese 
University of Hong Kong—New Territories East 
Cluster Clinical Research Ethics Committee (Ref No.: 
2020.061). The model was developed from a publicly 
available dataset and validated on retrospectively 
acquired data from our institution. The requirement 
for patient consent was waived by the Committee 
given the retrospective design of the study and 
anonymisation of all CT scans prior to use.
 The results of this diagnostic accuracy study 
are reported in accordance with the Standards 
for Reporting of Diagnostic Accuracy Studies 
guidelines.10

Public dataset: model development and 
internal validation
We acquired 25 312 head CT scans from four 
institutions in North and South America available in 
the RNSA open dataset,11 and were split into slices 
(each slice ≥5 mm thick), which were then randomly 
shuffled and annotated by 60 volunteer experts from 
the American Society of Neuroradiology. Each CT 

slice was labelled to indicate the presence and type of 
ICH. When present, ICH was classified according to 
its location, namely, intraparenchymal haemorrhage 
(IPH), subarachnoid haemorrhage (SAH), subdural 
haemorrhage (SDH), epidural haemorrhage (EDH), 
and intraventricular haemorrhage (IVH). The RSNA 
dataset comprised 752 807 CT slices, which were 
divided into a training subset (85%) and test subset 
(15%) for internal validation. Each subset consisted 
of approximately 86% negative ICH slices and 
14% positive ICH slices, along with the following 
proportions of ICH subtypes: 4.8% IPH, 4.7%-4.8% 
SAH, 6.3% SDH, 0.4% EDH, and 3.4%-3.5% IVH.
 The convolutional neural network (CNN) 
VGG (named after the Visual Geometry Group from 
the University of Oxford, United Kingdom) is an 
effective end-to-end algorithm for image detection.12 
In this study, we adopted the VGG architecture 
with a customised output layer and loss function 
optimised for multi-label classification. To adjust 
for the low prevalence of ICH in the training set, 
each subtype’s logit outputs zi were concatenated as 
independent channels after a sigmoid output layer:
           σ(zi ) =      1           1 + e(zi) 
 The performance of the CNN model was 
evaluated by binary cross-entropy loss and 
Sørensen–Dice loss13:
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 Binary cross-entropy loss = -ytruth ∙ log(σ(zi))-
(1-ytruth) ∙ log(1-σ(zi))

Sørensen–Dice loss = 1 - 2 ∙ ytruthσi(zi)
     ytruth+σi(zi)
 The loss functions were linearly combined 
with weighted values to produce the multi-label 
classification loss:

 Where wi denotes the class prevalence weight, 
and α and β denote respective loss mix ratios. For 
simplicity, wi=1⁄(n-1) for all subtype classes and 
wi=1 for ‘ANY’ was treated as an independent ICH 
class.
 The model was trained with software written 
in our laboratory using the end-to-end open-source 
machine learning platform TensorFlow on an Nvidia 
Titan Xp graphics processing unit.
 During internal validation (ie, slice-level 
performance for the detection of any type of ICH), 
the model achieved an area under the curve (AUC) 
of 0.912 (95% confidence interval [CI]=0.909-
0.915) with sensitivity and specificity of 85% and 
80%, respectively. Additionally, for the detection of 
specific types of ICH, the following AUC (95% CI) 
and sensitivity/specificity values were obtained: 
0.860 (0.853-0.867) and 77%/88% for IPH, 0.835 
(0.829-0.842) and 75%/82% for SAH, 0.850 (0.845-
0.855) and 74%/83% for SDH, 0.813 (0.790-0.836) 
and 72%/80% for EDH, and 0.870 (0.861-0.879) and 
79%/89% for IVH.

Prince of Wales Hospital dataset: external 
validation
The consecutive head CT scans of patients aged ≥18 
years who underwent initial brain CT scans in the 
Accident and Emergency Department of Prince of 
Wales Hospital from 1 to 31 July 2019 were included, 
thereby simulating the point prevalence of ICH.
 Head CT scans were acquired on a 64-slice 
CT scanner. Data analyses were conducted using 
reformatted 5-mm-thick slices, which can be 
accessed and viewed by physicians at all hospital 
workstations. DICOM (Digital Imaging and 
Communications in Medicine) images were de-
identified prior to data analyses. The large volume 
of data was explored through the identification of 
relevant CT data using an automated program which 
selected scans with specific DICOM tags. Computed 
tomography scans performed for follow-up purposes 
or after recent intracranial surgery, as well as scans 
without radiologist reports, were excluded from the 
analysis.
 We reviewed the corresponding radiology 
reports to determine the presence and type of ICH 
(IPH, SAH, SDH, EDH, or IVH). The CT scans were 
assessed by radiologists or senior radiology trainees; 
the corresponding reports were regarded as scan-

level ground truth labels for analysis, consistent with 
their use as clinical reference standards in Hong 
Kong. Considering its rarity, EDH was grouped with 
and labelled as SDH, which has a similar appearance 
on CT. For scans with false-negative results, we 
performed post-hoc labelling of model-nominated 
CT slices. All scans were assessed prior to model 
construction; thus, the scan reports were established 
without knowledge of the AI results. Furthermore, 
all scans comprised the external validation dataset 
and constituted ‘unseen data’ for the model.

Statistical analysis
The diagnostic accuracies of the model for the 
detection of any type of ICH and each type of ICH 
were determined by calculation of the AUC with 
95% CI, using DeLong et al’s method.14 To construct 
the confusion matrix during external validation, 
CT scans were classified as ICH-positive using 
a pre-specified probability threshold of ≥50%8; 
the corresponding sensitivity, specificity, positive 
predictive value (PPV), negative predictive value 
(NPV), and accuracy were calculated. Additional 
probability thresholds were established to achieve 
90% sensitivity and 90% specificity for the presence 
of any type of ICH. Statistical analysis was performed 
using R software (version 4.0.2; R Foundation for 
Statistical Computing, Vienna, Austria), and the 
threshold for statistical significance was set at 
P<0.05.

Results
Model output
Figure 1 shows an example of the model output. The 
model report includes an overall probability for the 
presence of ICH (labelled ‘A’ in Fig 1). Additionally, 
the model selects five representative CT image slices 
which are likely to contain ICH (one such slice is 
labelled ‘B’ in Fig 1), along with the probability of 
each ICH type in each representative slice (labelled 
‘C’ in Fig 1). All scans were successfully analysed by 
the model.

Prince of Wales Hospital data and model 
validation
The Standards for Reporting of Diagnostic Accuracy 
Studies diagram and corresponding confusion matrix 
are shown in Figure 2. In total, 1372 head CT scans 
(84 [6.1%] with ICH) were included in the analysis. 
The distribution of ICH types is summarised in the 
Table.

Diagnostic performance of scan-based 
detection for any type of intracranial 
haemorrhage
The model achieved an AUC of 0.842 (95% CI=0.791-
0.894; P<0.001) for the identification of any type of 
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ICH. Using a probability threshold of ≥50% for the 
presence of ICH, the accuracy, sensitivity, specificity, 
PPV, and NPV were 78.6%, 73%, 79%, 18.6%, and 
97.8%, respectively. In total, 62 scans were true 
positive, 22 were false negative, 1017 were true 
negative, and 271 were false positive (Fig 2).
 Among the 62 true-positive scans, the model 
output in two cases did not contain ICH-positive CT 
slices: 6-mm IPH in the pons (n=1) and trace SAH 
in a patient with multiple metastatic tumours (n=1). 
Figure 3 shows selected cases of model-nominated 
CT slices with subtle ICH.
 Among the 22 false-negative scans, 19 had one 
type of ICH (6 IPH, 7 SAH, 5 SDH, and 1 IVH), two 
had two types of ICH (1 IPH+SAH and 1 SAH+SDH), 
and one had three types of ICH (IPH+SAH+IVH). In 
16 scans, the model selected at least one ICH-positive 
CT slice which allowed correct reclassification (Fig 
4). The remaining six scans with undetected ICH 
(Fig 5) comprised small midbrain IPH (n=1), trace 
SAH (n=3), and thin SDH/EDH (n=2). One of the 
three cases of undetected trace SAH was visualised 
on thin CT slices but not on thick CT slices.
 A probability threshold of 20.4% yielded a 
sensitivity of 90% (40% specificity, 9% PPV, and 
98.3% NPV), whereas a threshold of 65.7% yielded 
a specificity of 90% (64% sensitivity, 30% PPV, and 
97.4% NPV), for the detection of ICH.

Diagnostic performance of scan-based 
detection for each type of intracranial 
haemorrhage
At a probability threshold of ≥50%, the following 
AUC (95% CI) and corresponding sensitivity/
specificity were obtained for each type of ICH: 0.930 
(0.892-0.968) and 4%/100% for IPH, 0.766 (0.684-
0.849) and 12%/96% for SAH, 0.865 (0.783-0.947) 
and 75%/90% for SDH/EDH, and 0.935 (0.852-1.000) 
and 85%/93% for IVH.

Discussion
In this study, we used a large international training 
dataset to construct a model for ICH detection, 
then conducted external validation using data from 
Hong Kong. To overcome the discrepancy between 
the training dataset (composed of CT slices) and 
the validation dataset (composed of CT scans), 
and considering our goal of clinical application, 
we designed a model that iteratively conducts 
assessments at the slice level to generate an overall 
probability at the scan level, then nominates the 
slices with the highest ICH probability for clinician 
evaluation. Furthermore, we performed validation 
using a point-prevalence approach to determine the 
diagnostic performance of the model in a real-world 
setting. Considering the 6% prevalence of ICH in 
our institution, and using a pre-specified probability 
threshold of ≥50%, the model detected 74% of ICH-

positive scans; this outcome improved to 93% via 
manual review of model-nominated images.

Artificial intelligence for intracranial 
haemorrhage detection: research and reality 
Multiple studies have successfully used AI 
for ICH detection via deep learning methods, 
typically involving variants of CNNs. For example, 
Arbabshirani et al5 (deep CNN, >37 000 training CT 
scans) reported an AUC of 0.846 on 342 CT scans; 
Chang et al4 (two-dimensional/three-dimensional 
CNN, 10 159 training CT scans) reported an AUC 
of 0.983 on 862 prospectively collected CT scans. 

FIG 1.  Sample model output, highlighting three types of information provided by 
the model. A: intracranial haemorrhage (ICH) probability; B: model-nominated 
image with possible ICH and corresponding slice number in the computed 
tomography (CT) scan; C: probability of each ICH type for the corresponding CT 
slice
Abbreviations: IPH = intraparenchymal haemorrhage; IVH = intraventricular 
haemorrhage; SAH = subarachnoid haemorrhage; SDH = subdural haemorrhage



  #  Abrigo et al #

116 Hong Kong Med J  ⎥  Volume 29 Number 2  ⎥  April 2023  ⎥  www.hkmj.org

Furthermore, Chilamkurthy et al3 (CNN, >290 000 
training CT scans) reported an AUC of 0.94 on 491 
CT scans; Lee et al7 (four deep CNNs, 904 training 
CT scans) reported an AUC of 0.96 on 214 CT 
scans. Finally, Ye et al8 (three-dimensional joint 
CNN-recurrent neural network, 2537 training CT 
scans) reported an AUC of 1.0 on 299 CT scans; 
Kuo et al6 (patch-based fully CNN, 4396 training 
CT scans) reported an AUC of 0.991 on 200 CT 
scans. Although these results demonstrate the 
high diagnostic performance that can be achieved 
using deep learning methods for ICH detection, 
the studies were conducted using in-house training 
datasets, which are laborious to produce and limit 
subsequent clinical applications. Moreover, the 
results may not be directly applicable to clinical 
practice, considering the limited number (generally 
<500) of CT scans during validation, as well as the 
effect of prevalence on sensitivity and specificity. 
Yune et al15 demonstrated this problem with a deep 
learning model that had an AUC of 0.993 on selected 
cases, which decreased to 0.834 when validated on 
CT scans collected over a 3-month period; notably, 
this is comparable with the AUC of our model. 
Thus, model performance in a real-world setting can 
reduce the risk of bias and serve as a better indicator 
of clinical relevance.16

FIG 2. Standards for the Reporting of Diagnostic Accuracy flowchart for external validation of the model using computed 
tomography (CT) scans from Prince of Wales Hospital. The confusion matrix is shown below the flowchart
Abbreviation: ICH = intracranial haemorrhage

TABLE.  Distribution of computed tomography (CT) scans 
without and with intracranial haemorrhage in the Prince of 
Wales Hospital dataset (n=1372)

Classification ICH type(s) No. of CT scans

ICH absent - 1288

ICH present A 23

B 12

C 20

D 1

AB 6

AC 1

AD 5

BC 4

BD 2

CD 0

ABC 5

ABD 3

ACD 0

BCD 0

ABCD 2

Abbreviations: A = intraparenchymal haemorrhage; B = 
subarachnoid haemorrhage; C = subdural haemorrhage; D = 
intraventricular haemorrhage; ICH = intracranial haemorrhage
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Artificial intelligence for intracranial 
haemorrhage detection: our approach
The development of an AI model is the first step in a 
long process of clinical translation. In this study, we 
aimed to construct an algorithm that was reasonably 
comparable with radiologist performance, prior to 
further tests in a clinical setting. We recognise that 
our model is not an end-product; it constitutes an 
initial exploration of the potential for an international 
dataset–derived algorithm to be implemented in our 
institution. To avoid problems associated with the 
lack of an annotated dataset from Hong Kong, we 
utilised a dataset labelled by international experts, 
which is the most extensive open-access dataset 
currently available. However, the model achieved 
limited diagnostic accuracy, mainly because of type 
1 error (ie, identification of false positives). The 
training dataset was composed of CT slices, whereas 
the model functioned at the CT scan level, iteratively 
assessing all slices to identify slices with highest ICH 
probability. If any slice identified in a single scan is 
considered positive, the model reports the CT scan as 
‘ICH-positive’. Thus, any detection of false positives 
at the slice level will lead to amplification of the false-
positive rate at the scan level. This strategy resulted 

in a low PPV (~19%) and a high NPV (~98%). To 
reduce the detection of false positives, we included 
a CT slice nomination feature in the model, which 
highlights CT slices with the highest probability of 
ICH. This facilitates manual review and reduces the 
black-box nature of the model.

Potential implications of artificial 
intelligence–detected intracranial 
haemorrhage in clinical practice
During validation, the model was tested using an 
ICH point–prevalence approach to elucidate the 
potential clinical implications of the classification 
outcomes. With respect to true positives, most ICH-
positive scans were detected; most of these scans 
had large areas of ICH, which presumably could be 
easily identified by non-radiologists. However, in 
six cases, the model correctly nominated CT slices 
with small areas of ICH. In two cases, the nominated 
images did not have ICH, which could potentially 
have led to incorrect reclassification of the scan as 
a false positive.
 Furthermore, there were many false positives. 
Such results may reduce physician confidence despite 
the correct interpretation of an ICH-negative scan; 

FIG 3. Representative computed tomography slices from model outputs for selected true-positive scans showing small or subtle 
intracranial haemorrhage. Arrowheads have been added to indicate intracranial haemorrhage. (a) Haemorrhage within a cystic 
tumour; (b, d, and e) subarachnoid haemorrhage; (c) intraparenchymal haemorrhage; (f) subdural haemorrhage

(a)

(d)

(b)

(e)

(c)

(f)
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FIG 4.  Representative computed tomography slices from model outputs for false-negative scans showing intracranial haemorrhage. Arrowheads have 
been added to indicate intracranial haemorrhage. (a) Intraventricular haemorrhage; (b, c, f, g, h, and i) subarachnoid haemorrhage; (d, e, l, m, n, o, and p) 
intraparenchymal haemorrhage; (j and k) subdural haemorrhage

they may lead to overdiagnosis (with prolonged 
hospitalisation) or further investigations, such as a 
follow-up CT scan that involves additional radiation 
exposure.
 With respect to false negatives, the model 
output includes a secondary mechanism of image 

review that allowed correct reclassification of 16 
scans, increasing the rate of ICH detection from 
74% to 93%. In five cases, ICH was conspicuous on 
the nominated images; in 11 cases, the nominated 
images displayed subtle ICH. In cases of subtle ICH, 
it is possible to overlook the trace amount of ICH 

(a)

(e)

(i)

(m)

(b)

(f)

(j)

(n)

(c)

(g)

(k)

(o)

(d)

(h)

(l)

(p)
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FIG 5. False-negative computed tomography scans with undetected intracranial haemorrhage. Arrowheads have been added 
to indicate intracranial haemorrhage. (a-e) Representative images of intracranial haemorrhage in thick computed tomography 
slices [(a) intraparenchymal haemorrhage; (b and d) subdural haemorrhage; (c and e) subarachnoid haemorrhage]. (f) Trace 
subarachnoid haemorrhage that was visible in reformatted coronal thin computed tomography slices but not thick computed 
tomography slices

on the nominated CT slice. The same problem may 
affect true-positive scans, which may be misclassified 
as false positives unless subtle ICH is recognised in 
the nominated image. Unfortunately, the model-
generated probability of each type of ICH in each 
selected image did not facilitate the localisation of 
ICH.
 Based on our primary clinical motivation to 
develop this model, we focused on CT scans with 
reformatted thick CT slices that can be viewed 
in all hospital workstations by non-radiologists. 
In practice, radiologists use dedicated imaging 
workstations to view sub-millimetre thin CT slices 
with greater sensitivity, which can display smaller or 
subtler pathologies. Thus, there is limited capacity 
for ICH detection in thick CT slices; this was 
highlighted in a case of trauma-related trace SAH, 
which was visible on thin CT slices but not thick CT 
slices. Subarachnoid haemorrhage is reportedly the 
most difficult type of ICH to interpret.17 In practice, 
a patient with a very small amount of isolated 
traumatic SAH would likely receive conservative 
treatment, and the pathology could reasonably await 
detection via radiologist assessment.

Limitations
This study had some limitations. First, diagnostic 
accuracy would have been more comprehensively 
assessed using a larger number of CT scans or a 
longer point prevalence; however, we limited the 
assessment to CT scans collected over a 1-month 
period, considering the preliminary stage of model 
development. Second, the CT scans were assessed 
by radiologists and senior radiology trainees who 
may have different degrees of experience in ICH 
detection17; importantly, this limitation reflects 
the real-world setting where model deployment 
is intended. Finally, the model was specifically 
trained for the detection of ICH; it was not trained 
for the detection of other clinically significant 
non-ICH findings (eg, non-haemorrhagic tumours, 
hydrocephalus, or mass effect). The detection of 
these other pathologies will require dedicated 
models with customised training datasets.

Conclusion
In this study, we used a CT slice–based dataset 
to develop an algorithm for CT scan–based ICH 

(a)

(d)

(b)

(e)

(c)

(f)



  #  Abrigo et al #

120 Hong Kong Med J  ⎥  Volume 29 Number 2  ⎥  April 2023  ⎥  www.hkmj.org

detection; we validated the model using our 
institutional data with a point-prevalence approach, 
yielding insights regarding its utility in real-world 
clinical practice. Although the model demonstrated 
good accuracy, its diagnostic performance is 
currently limited to the intended clinical application. 
However, our results support further development of 
the model to improve its accuracy and incorporate a 
mechanism that can facilitate visual confirmation of 
ICH location. These modifications would enhance 
the interpretability of the deep learning model and 
would be useful for further evaluation of clinical 
applications.
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