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K e y  M e s s a g e s 

1.	 The validity and predictability of three 
epidemic models were evaluated: a hybrid-
type homogeneous stochastic model, an age-
structured variant of the previous model, and a 
power-law logistic model.

2.	 Reporting rates affect the interpretation of 
model parameters only but not the performance 
of parameter estimation or real-time epidemic 
forecasting.

3.	 Reliable and precise real-time epidemic 
forecasting is improbable during the early phase 
of an epidemic and unlikely to be robust until the 
epidemic has peaked, when using only epidemic 
curve data and any of the three models.

Real-time forecasting of infectious disease 
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Introduction
Mathematical modelling of infectious disease has 
greatly progressed. Much effort has been devoted 
to statistical inference of model parameters in real 
time with certain assumptions about the underlying 
transmission dynamics.1 In contrast, real-time 
epidemic forecasting has been understudied. 
Although robust and well-established forecasting 
techniques for epidemics remain largely elusive, the 
ability to predict future incidence is regarded as one 
of the key functions of epidemic models (especially 
among non-modellers and policymakers). 
	 Various scientific approaches have been 
attempted to forecast the course of epidemics of 
influenza and other directly transmitted diseases. 
These approaches can be broadly classified into two 
categories. One relies on a mechanistic model of 
transmission dynamics, and the other uses statistical 
extrapolation of epidemic curves. The mechanistic 
approach explicitly accounts for so-called ‘dependent 
happening’, which refers to the dependence of the 
risk of infection in one individual on the risk in other 
individuals. These models are built by describing 
the underlying dynamics of infectious disease 
transmission to explain the resulting epidemic 
curves. The other approach includes studies that 
use a parsimonious but flexible power-law logistic 
equation to directly fit the flexible parametric 
model to epidemic curves.2 Although this approach 
necessarily disregards dependent happening, 
mechanistic models can be approximated by a family 
of logistic equations. 
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	 Forecasts of incidence are largely inaccurate 
and imprecise until the epidemic has peaked and 
depend strongly on the proportion of population 
that is susceptible at the beginning of the epidemic. 
We examined these aspects by comparing three 
forecasting methods in five case studies to improve 
the understanding of the feasibility and reliability 
of these models for real-time epidemic forecast. 
This study aimed to validate the three forecasting 
methods by varying precision of data and length of 
forecast and to assess the predictability of the three 
forecasting methods by timing and length of forecast.

Methods
We evaluated the following three forecasting 
methods. 
	 (1) A hybrid-type homogeneous stochastic 
model.3 Let Ri be the reproductive number at the 
beginning of an epidemic, Tg be the mean generation 
time, Sk be the number of susceptible individuals at 
the beginning of period k, rk be the epidemic growth 
rate in period k, and Ck be the number of cases in 
period k. Given C0, …, Ck, the probability distribution 
of Ck+1 is a Poisson distribution with mean AkCk where
  

	 This model has two parameters: (S0, Ri).
	 (2) An age-structured variant of the previous 
model that is analogous to the model developed by 
Katriel et al.4 Let n be the number of age-groups. 
We assume that given the same level of exposure, 

RESEARCH FUND FOR THE CONTROL OF INFECTIOUS DISEASES

4.	 Robust real-time epidemic forecasting, if possible 
at all, requires other sources of epidemic data, 
such as seroprevalence, household transmission 
data, and phylogenetic data.

5.	 Epidemiologists and public health policymakers 
should be aware of these results when using 
models for real-time epidemic forecasting.
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age-group j is aj times as susceptible to infection as 
age-group 1 (ie a1=1). We assume a contact matrix 
B=[bi,j], where bi,j is the contact frequency between 
age-groups i and j normalised such that the largest 
eigenvalue of B is 1. We parameterise B using the UK 
contact matrix from the POLYMOD study.5 Let Ck,j 
be the number of cases in age-group j on day k. Given 
C0,j, …, Ck,j, j = 1, …, n, the probability distribution 
of Ck+1,j is a Poisson distribution with mean 

Sk,jR0aj∑bij∑Ck-l,igl, where Sk,j = Sk-1,j−Ck,j is the 

number of susceptible individuals in age-group j at 
the beginning of day k , R0 is the basic reproductive 
number, and g is the generation time distribution. 
This model has 2n parameters: (R0, a2, …, an, S1, …, Sn).
	 (3) A power-law logistic model2 in which 
the cumulative number of cases at time t is

I(t) =         K          . The incidence between time t and 

and t+Δt is assumed to be a Poisson distribution with 
mean I(t+Δt) − I(t). This model has four parameters: 
(K, r, tm, α). 
	 Parameters are estimated in a Bayesian 
framework with non-informative flat priors for all 
parameters. Model validity is assessed using mean 
absolute error (MAE), root mean squared error 
(RMSE), and mean absolute percentage error (MAPE):
  

where n is the number of age-groups, m is the 
number of reporting periods over the course of 
the epidemic, and E(Ck,j) and xk,j are the number 
of cases in the jth age-group during the kth period 
in the model and the observed data, respectively. 
Model predictability is assessed for short-range 
and long-range forecasts (Fig 1) by examining (1) 
the coefficient of variation of forecasted incidence, 
(2) the percentage of forecasting periods for which 
the actual incidence lies outside the 95% prediction 
intervals of the forecasted incidence, and (3) f MAE, 
defined as the MAE of the model forecast and actual 
future incidence over the forecast periods.
	 The first step is to use simulated data to 
understand the behaviour and performance of the 
three models before applying them to real epidemic 
data. We generate the simulated data using a standard 
age-structured SIR model with a basic reproduction 
number R0 of 1.3 and a mean generation time of 3 
days (ie epidemiologically similar to a mild influenza 
pandemic). We assume that the three groups 
correspond to the 0-19, 20-59, and ≥60 years age-
groups in Hong Kong and that group j is j times as 

susceptible as group 1. To assess the effect of under-
reporting on forecast performance, we consider 
reporting rates of 100% and 5%. 
	 The smallpox dataset contains the monthly 
number of smallpox cases in the Netherlands from 
1870 to 1873 (with no age information). The mean 
generation time is assumed to be 15 days.
	 The polio dataset contains the daily number of 
polio cases in New York City in 1916 (with no age 
information). The mean generation time is assumed 
to be 10 days.
	 The pandemic influenza A/H1N1 dataset 
contains the daily number of confirmed cases of 
pandemic influenza A/H1N1 in five age-groups 
(0-12, 13-19, 20-29, 30-59, and ≥60 years) between 
1 September and 15 November 2009 in Hong Kong. 
This period was selected because schools were closed 
before 1 September 2009, and the exogenous force of 
infection from Shenzhen contributed substantially 
to the transmission of pandemic influenza A/H1N1 
in Hong Kong after 15 November 2009 (ie, the 
transmissibility of the virus was relatively constant 
during this period.) The mean generation time was 
assumed to be 3 days. 
	 The SARS dataset contains the daily number 
of confirmed SARS cases in three age-groups (0-31, 
32-49 and ≥50 years) between 15 February and 31 
May 2003 in Hong Kong. The age partition was 
chosen so that the total number of cases in each age-
group were similar (which facilitates model fitting). 
The mean generation time was assumed to be 8 days.

Results
The results of model validation and predictability for 
the three methods are shown in the Figure. With a 
reporting rate of 100%, Markov chain Monte Carlo 
inference did not converge until just before the 
epidemic peak for models 1 and 2 but converged 
sooner for model 3, although the model fit was 
poor before the peak. In terms of model fitting and 
real-time epidemic forecast, model 2 had the best 
performance, and model 3 performed better than 
model 1 until near the end of the epidemic. This was 
unsurprising, because model 2 is an age-structured 
variant of model 1 with the correct contact matrix, 
and model 3 has two more parameters than model 
1, giving more flexibility. However, the predictive 
power of all three models was generally poor; 
future incidence almost always fell outside the 95% 
prediction intervals for both short- and long-range 
forecasts until near the end of the epidemic. 
	 With a 5% reporting rate, the comparative 
performance of the three methods was similar to that 
with a 100% reporting rate. Thus, reporting rate had 
little effect on parameter estimation and epidemic 
forecasting for all three methods. Further analysis 
revealed that the mathematical structures of models 
1 and 2 were not affected by the incorporation of 
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FIG.  Real-time epidemic forecasting of the three models in a simulation with (a) a 100% reporting rate, (b) a 5% reporting rate, and (c) the pandemic 
influenza A/H1N1 case study. 
Abbreviations: CV, coefficient of variation; fMAE, forecast mean absolute error; MAE, mean absolute error; MAPE, mean absolute percentage error; OB, out 
of bounds; RMSE, root mean square error 
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reporting rate (data not shown). 
	 In the pandemic influenza A/H1N1 case 
study, models 1 and 2 did not converge until the 
epidemic peak, but model 3 converged much earlier. 
Furthermore, the goodness-of-fit of all three models 
was almost constant over time, indicating that the 
posterior distributions of the parameters were robust 
as soon as the epidemic had peaked and the parameters 
were identifiable. After the peak, model 2 provided the 
best fit to the data. Model predictability was limited 
for both long-range and short-range forecasts.
	 The results in the other three case studies 
were similar to those of this case study and are 
documented in the final report of this study.

Discussion
Our results showed that reporting rates affected 
only the interpretation of model parameters but not 
the performance of parameter estimation or real-
time epidemic forecasting (aside from increased 
stochasticity because of lower case counts). In all five 
case studies, the parameter values were largely not 
identifiable (ie Markov chain Monte Carlo did not 
converge) for models 1 and 2 until or even after the 
epidemic peak. 
	 Reliable and precise real-time epidemic 
forecasting is improbable during the early phase 
of the epidemic and unlikely to be robust until the 
epidemic has peaked when using only epidemic curve 
data and any of the three models. Robust real-time 
epidemic forecasting, if possible at all, requires other 
sources of epidemic data, such as seroprevalence, 

household transmission, and phylogenetic data. 
Model predictability should be evaluated not only 
by computing simple error measures between actual 
and forecasted incidence but also by interpreting 
these measures in the context of the forecast’s level 
of uncertainty (the wider the prediction interval, the 
less useful the forecast, but the more likely that the 
actual incidence falls within the prediction interval). 
Epidemiologists and public health policymakers 
should be aware of these drawbacks when using 
models for real-time epidemic forecasting.
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