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The role of SARS-CoV protein, ORF-6, 
in the induction of host cell death

Key Messages
1. Overexpression of ORF-6 

induced apoptosis.
2. Caspase-3 inhibitor and JNK 

inhibitor blocked ORF-6 
induced apoptosis. 

3. The protein level of ER 
chaperon protein, GRP94, was 
up-regulated when ORF-6 was 
overexpressed. 

4. ORF-6 induced apoptosis via 
caspase-3–mediated, ER stress 
and JNK dependent pathways. 
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Introduction

In 2003, Hong Kong experienced an outbreak of severe acute respiratory 
syndrome (SARS) and incurred huge economic and social losses. 
Immunohistochemistry and in situ hybridisation of organs from deceased SARS 
patients revealed that the virus was not only in the lungs and intestines, but also 
in the liver, distal convoluted renal tubules, sweat glands, parathyroid glands, 
pituitary gland, pancreas, adrenal glands, and the cerebrum. The aetiological 
agent for this disease was a novel member of the coronavirus (SARS-CoV) 
family, with limited sequence homology to other coronaviruses.1-8 Coronaviruses 
are enveloped, plus-stranded RNA viruses that lead to respiratory diseases akin 
to those caused by avian coronavirus and infectious bronchitis virus. The SARS-
CoV encodes 23 putative proteins including four typical structural proteins: the 
spike, nucleocapsid, membrane, and envelope proteins.4,7 These four proteins 
contribute to the host’s immune response, as has been observed with many 
other transmissible viruses, such as gastroenteritis coronavirus, bronchitis virus, 
porcine respiratory coronavirus, and mouse hepatitis virus. In addition to the 
structural proteins, replicase 1a ORF, replicase 1b ORF and eight novel ORFs 
have been identified.

 Eight SARS-CoV–encoded proteins have been shown to induce apoptosis.9 
These suggest that apoptosis may play an important role in helping with virus 
dissemination in vivo, minimising the inflammatory reaction and evasion of 
the host’s defence mechanisms. Studies of its pathology have revealed diffuse 
alveolar damage as the most notable feature in persons who died of SARS. In 
SARS patients, apoptosis occurs in the alveolar epithelial cells. Four SARS-
CoV accessory proteins have been shown to induce apoptosis, ORF-3a (also 
known as U274, SARS X1, or ORF-3), ORF-3b (also known as ORF-4), ORF-
7a (also known as U122, SARS X4, or ORF-8) and ORF-8a.10-12 We report the 
characterisation of another SARS-CoV group-specific gene product encoded by 
ORF-6 (also known as X3, ORF-7), which contains 63 amino acids (equivalent 
to nucleotides 27,074 - 27,265 in Tor2 genome sequence).4 This small protein has 
no significant sequence homology to other proteins, and has been identified as an 
ER/Golgi membrane localised protein.13

 We report that (1) there was overexpression of ORF-6 induced apoptosis; 
(2) caspase-3 was activated in the presence of ORF-6; (3) apoptosis induced by 
ORF-6 and ORF-7a was blocked by caspase-3 inhibitor, z-DEVD, and the JNK 
(c-Jun N-terminal kinase) inhibitor; and (4) ORF-6 and ORF-7a up-regulated 
levels of ER chaperone protein and 94kDa glucose-regulated protein (GRP94). 
All these features suggest that in addition to ORF-3a, ORF-3b and ORF-7a, 
ORF-6 is a new player involved in SARS-CoV–induced apoptosis and both 
ORF-6 and ORF-7a share similar pathways to induce apoptosis.

Results and discussion

Overexpression of ORF-6 protein induces apoptosis
In the search for SARS proteins that could induce apoptosis, ORF-6 and ORF-7a 
were amplified by polymerase chain reaction, and restriction sites BamHI and 
XhoI were introduced at the 5’ and 3’ end, respectively. The fragments of ORF-6 
and ORF-7a were sub-cloned into mammalian expression vector GFP-N1. GFP-
ORF-6 was transfected into Vero E6 and COS-7 cells. We observed that ORF-6 
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was able to induce apoptosis when overexpressed in Vero 
E6 and COS-7 cells (Fig 1). Approximately one third of the 
cells died when 2 µg of ORF-6 DNA was transfected into 
cells. The number of apoptotic cells increased when more 
ORF-6 DNA was transfected into the cells (Fig 1). The death 
rates were comparable to rates caused by the overexpression 
of Bax, a well-known pro-apoptotic member of the Bcl-
family, and ORF-7a, a SARS protein that has been shown to 
induce apoptosis.11 GFP-N1 served as the negative control, 
as the transfection of 5 µg of GFP-N1 DNA did not induce 
apoptosis. These results showed that the ORF-6 protein did 
induce apoptosis.  

Overexperession of ORF-6-induced apoptosis is 
caspase-3 dependent
ORF-7a induces apoptosis via a caspase-3–dependent 
pathway.11 To determine if cell death induced by ORF-6 is 
also caspase-3 dependent, a caspase-3–specific inhibitor, 
z-DEVD, was used to block caspase-3 activation in the 
cells. In the absence of z-DEVD, approximately 60% of the 
cells underwent apoptosis when ORF-6 and ORF-7a were 
transiently transfected into the Vero E6 cells. However, 
when ORF-6 or ORF-7a were overexpressed in z-DEVD 
pretreated cells, the percentage of apoptotic cells was 
significantly decreased to approximately 20% (Fig 2a). In 

Fig 1. Overexpression of ORF-6–induced apoptosis in different cell lines
(a) COS-7 and (b) Vero E6 cells were transiently transfected with GFP and HA-Bax, GFP-N1, GFP-ORF-6 and GFP-ORF-7a for 24 hours. 
The nuclei of the cells were stained by Hoechst for 15 minutes. The number of healthy cells was counted under fluorescence microscopy 
with no DNA condensation and fragmentation. The percentage of apoptotic cells was calculated by the number of healthy cells over the 
total number of transfected cells. Experiments were repeated three times. Standard deviations are shown
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parallel, caspase-3 activities were also monitored when the 
Vero E6 cells were transfected with ORF-6. The activity of 
caspase-3 can be detected by the amount of the 17kD active 
form of caspase-3 in cells by using caspase-3–specific 
antibodies. Both ORF-6 and ORF-7a induced caspase-3 
activation, as the 17kD active form of caspase-3 was detected 
in both (Fig 2b). Cells without any treatment served as a 
negative control, and those treated with taurosporine served 
as a positive control. Similar results were obtained using 
293T or COS-7 cells (data not shown). Our observation 
suggests that overexpression of ORF-6 induced apoptosis 
via a caspase-3–dependent pathway.

JNK inhibitor blocks ORF-6 and ORF-7a–induced 
apoptosis
One of the mechanisms for SARS protein–induced cell 
death is via the JNK pathway; JNK is phosphorylated in 
SARS-CoV–infected Vero E6 cells, and the JNK inhibitor 

(SP600125) can block SARS-CoV–infected Vero E6 
cell–induced apoptosis. We investigated whether the 
JNK inhibitor could block ORF-6– and ORF-7a–induced 
apoptosis in Vero E6 cells. Interestingly, apoptosis induced 
by ORF-6 and ORF-7a was blocked by the JNK inhibitor. 
The blocking efficiency was similar to that of z-DEVD, as 
only approximately 10% of cells underwent apoptosis (Fig 
2c). The JNK inhibitor was also able to block ORF-6 and 
ORF-7a in 293T and COS-7 cells (data not shown). These 
results suggest that the JNK inhibitor was able to block 
overexpression of ORF-6- or ORF-7a–induced apoptosis.

ORF-6 and ORF-7a induce ER stress
ORF-6 is localised in the ER/Golgi membrane, which 
is consistent with our immunostaining result for ORF-
6 and ORF-7a in COS-7 cells (data not shown).13 Since 
both ORF-6 and ORF-7a are ER localised, we suspect 
that they induce apoptosis through the ER stress pathway. 

Fig 2. Overexpression of ORF-6–induced apoptosis is caspase-3 and JNK dependent
(a) Caspase-3 inhibitor (z-DEVD) blocks ORF-6–induced apoptosis. Vero E6 cells were incubated with either dimethyl sulfoxide or 50 µM 
z-DEVD-fmk for 30 minutes before they were transiently transfected with 3 µg of GFP-Cb5, GFP-ORF-6 and GFP-ORF-7a for 24 hours. 
The nuclei of the cells were stained by Hoechst for 15 minutes. The number of healthy cells was counted under fluorescence microscopy 
with no DNA condensation and fragmentation. The percentage of apoptotic cells was calculated by the number of healthy cells over the 
total number of transfected cells. Experiments were repeated three times and the standard deviations are shown. (b) Overexpression of 
ORF-6- and ORF-7a induces caspase-3 activation. Vero E6 cells were transiently transfected with GFP-ORF-6 and GFP-ORF-7a for 24 
hours. Cell lysates were normalised to 2 µg/ml by lysis buffer and subjected to Western Blot with α-GFP, α-caspase-3 and α-Actin. For 
positive controls, cells were treated with 1 µM of staurosporine for 8 hours. Cells without any treatment were served as negative control. 
(c) JNK inhibitor blocked ORF-6–induced apoptosis. Vero E6 cells were incubated with either dimethyl sulfoxide or 40 µM JNK inhibitor 
for 30 minutes before they were transiently transfected with 3 µg of GFP-Cb5, GFP-ORF-6 and GFP-ORF-7a for 24 hours. Cell counts 
were done as mentioned in (b)
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GRP94 is an ER-resident molecular chaperone protein, for 
which the expression level is increased by ER-stress.14 We 
compared the protein level of GRP94 in order to check 
whether ER stress occurred in cells transfected with ORF-
6 and ORF-7a. In such cells, the GRP94 protein level 
increased compared to cells without transfection (Fig 3a). 
However, the protein level was lower than in cells treated 
with 1 µM Thapsigargin, a chemical specific for induction 
of ER stress. In parallel, we conducted dose-dependent 
experiments by transfecting different amounts of ORF-
6 and ORF-7a into cells. Consistently, the endogenous 
GRP94 protein level increased when the amount of ORF-
6 or ORF-7 increased (Figs 3b and 3c). Our observation 
suggests that overexpression of ORF-6 and ORF-7a could 
induce apoptosis via the ER-stress pathway.

 SARS-CoV encodes 23 putative proteins and in this 
context eight novel ORFs have been identified. Five of these 
(ORF-3a, ORF-3b, ORF-6, ORF-7a and ORF-8a) induce 
apoptosis when they are overexpressed in cells.10-12,15,16 
However, the responsible signalling pathway remains 

elusive. It has been shown that in SARS-CoV–infected 
Vero E6 cells, JNK is phosphorylated and that apoptosis 
was inhibited by both JNK and PI3K inhibitors.17 We found 
that the JNK inhibitor inhibits both ORF-6– and ORF-7a–
induced apoptosis. We therefore determined that ORF-6 
and ORF-7a in SARS-CoV may be responsible for inducing 
phosphorylation of JNK, which in turn leads to apoptosis.
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