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Introduction

The treatment of male infertility has been revolution-
ised by the development of intracytoplasmic sperm
injection (ICSI). In this procedure, only oocyte qual-
ity and individual sperm viability have been shown to
affect fertilisation rates.1 In conventional in vitro fer-
tilisation (IVF), approximately 50 000 morphologically
normal, motile sperm are used for each oocyte to
achieve acceptable fertilisation rates. In contrast, ICSI
requires just one viable sperm per oocyte to achieve
acceptable fertilisation rates. Palermo et al2 have dem-
onstrated that ICSI is an effective method to overcome
fertilisation failure in routine IVF. With the develop-
ment of ICSI, there has been a rapid increase in the
number and types of male infertility cases that are now
treatable, to the point where only complete testicular
failure is not.3 However, the rapid development of
disorders being treated with ICSI has not been equalled
by a rapid increase in our understanding of these
disorders, in particular their aetiology and potential
for inheritance.4

One in four infertile men will be given a diagnosis
of idiopathic or unexplained infertility.5 Despite the

fact that the cause of the infertility cannot be identi-
fied, in most cases the partners of these men can be
treated with ICSI. In effect, this approach treats the
disorder with little knowledge of the possible conse-
quences for the patient and/or their potential children.4

There is evidence that some cases of male infertility
have an underlying genetic basis.6 Furthermore, se-
vere male-factor infertility has been associated with a
10-fold increase in the occurrence of chromosomal
anomalies, compared with the general male popu-
lation.7 While the most common chromosomal anoma-
lies are those of the sex chromosomes, which may only
effect fertility, genetic diseases that are secondarily
associated with male infertility may also be transmit-
ted to children derived from ICSI.8 For example, the
incidence of balanced-translocation carriers, either
reciprocal or Robertsonian, is increased in infertile
men.9 Infertile carriers of balanced translocations
may produce unbalanced gametes with the potential
for this unbalanced phenotype to be inherited by an
ICSI-derived child.9 Hence, it has become important
to be able to identify individuals who may carry a
genetic defect that is responsible for their infertility.8

A genetic basis to some cases of male infertility
was first demonstrated after microscopically visible
deletions of the Y chromosome were observed in
chromosomal spreads from infertile men in 1976.10

More recently, discrete microdeletions of the long arm
of the Y chromosome (Yq) have been found in some
azoospermic and oligospermic men.11 A review by
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Simoni et al12 suggested that the overall incidence
of Yq microdeletions is more than 7% in infertile
men. This conclusion supports the view of Pryor et al13

that Y-chromosome deletions constitute a major aetio-
logical category of male infertility, second only to
varicocele. This review aims to summarise the main
findings from studies of Yq microdeletions that
are associated with infertility, and to highlight the
significance and limitations of such investigations.

Identification of Yq microdeletions

The literature contains more than 30 reports on Yq
microdeletions in infertile men, and the number of
infertile men screened for Yq microdeletions is greater
than 3000. The reported incidence of Yq microdeletions
in severe male-factor infertility ranges from 1% to
55.5%.8,13-34 All of these studies used a polymerase
chain reaction (PCR)–based screening approach
involving small sequence-tagged sites (STSs) in Yq11
as specific genomic Y-chromosome markers.35 Vollrath
et al35 established the first STS interval map of the
human Y chromosome, based solely on PCR analysis.
By screening a panel of 96 individuals with cytogen-
etically visible Y-chromosome deletions with 110 STS
loci in Yq11, Vollrath et al35 subdivided Yq11 into 23
intervals, termed 5A to 5Q and 6A to 6F. Vogt et al15

established another STS deletion map of Yq11, divid-
ing it into 25 intervals (D1-D25). Most of the studies
of Yq microdeletions are based on the maps from these
two groups.8,13-34 The difference in their methodolo-
gies relates to the number of STSs screened, which
ranges from one to 131.16,18 If a small number of STSs
are used to screen patient samples, there is a risk of
missing some deletion sites. Of equal concern is that
if a large number of STSs are used, they may contain
polymorphic sequences, which are deleted in normal
fertile men.14 The Yq region has been shown to con-
tain a number of neutral deletion polymorphisms in
normal fertile men.36 Kent-First et al14 performed an
extensive study of 112 Yq STSs in 920 proven fertile
males who were tested for polymorphisim and for re-
liability in the PCR assay. Sixty-nine STSs were shown
to be non-polymorphic and reliable in the assay; they
were then used to study samples from 514 infertile
men.14 It was determined that a subset of 49 of the 69
STSs would have detected all of the non-polymorphic
STS deletions.13 The study by Kent-First et al14 was
the first attempt to determine which of the STSs and
how many of them are required for an accurate screen-
ing protocol.14

Three studies have shown that when a Yq micro-
deletion is present in infertile men, ICSI-derived sons

will inherit the same deletion.8,37,38 One study looked
for Yq microdeletions in ICSI-derived sons, regard-
less of the father’s Yq status and found two cases in
which the son had a microdeletion on Yq but the infer-
tile father did not.8 The most probable explanation is
that the infertile fathers were mosaic for Yq deletions
and that the proportion of DNA that contained the
deletion was not detectable using currently available
methods.8

Using PCR, the STS products are amplified in an
exponential manner. Hence, if a proportion of the DNA
being screened had an intact copy of the STS, it would
mask the detection of any deleted copies.8 This con-
cept is also important for understanding how infertile
men acquired the microdeletions. Edwards and Bishop39

screened the fathers of infertile men who showed Yq
microdeletions, but the majority did not show the same
deletions. This result suggests that the microdeletions
arose de novo in the infertile men during embryo-
genesis or from a meiotic error in the germ line of the
presumably fertile father.39 However, mosaicism for
Yq microdeletions can occur,8 and it is possible that
the fathers of some infertile men may in fact carry Yq
microdeletions in a proportion of their cells. A number
of fathers of infertile men who have Yq microdeletions
have also shown the same or smaller deletions.13,15,17,19

In most of these cases, the fathers experienced long
periods of infertility before conceiving their son.13

An interesting family history has been presented,
which shows that a father and his four sons (confirmed
by paternity tests) all had Yq microdeletions.40 The
father, now aged 63 years, had azoospermia and an
elevated level of follicle-stimulating hormone, although
he conceived five children—four sons and one
daughter—in a period of 14 years.40 All four sons had
severe infertility. The father’s 44-year-old brother also
had azoospermia, with 16 years of infertility, but he
did not have the Yq microdeletion. This was the first
report of vertical transmission of a Yq microdeletion
to multiple offspring and indicates that the presence
of a Yq microdeletion is not an absolute marker for
infertility.40

Genotype-phenotype correlation of Yq
microdeletions

An early study by Tiepolo and Zuffardi10 described
the existence of a locus for spermatogenesis in the
euchromatic part of Yq (Yq11), named azoospermic
factor (AZF). The AZF region has been further divided
into four non-overlapping regions AZFa, AZFb, AZFc,
and AZFd (Fig).14 The regions were identified from
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studies showing that clusters of deletions occurred
within each one.14,15,41 Early studies attempted to as-
sign specific infertility phenotypes to each region—
for example, AZFa deletions would result in Sertoli
cell–only syndrome, AZFb deletions would result in
spermatogenic arrest, and deletions in AZFc would
result in some spermatogonia being present.15 Subse-
quent studies, however, showed that these associations
could not be made.13,14,16 Pryor et al13 showed that men
with mild oligospermia and normal sperm counts but
abnormal sperm morphology can have microdeletions
in either AZFa, AZFb, or AZFc loci. Although a de-
finitive genotype-phenotype correlation is not known
for Yq microdeletions, it is generally accepted that large
deletions that span multiple AZF regions or those
restricted to AZFa usually result in Sertoli cell–only
syndrome or severe oligospermia.14 Those micro-
deletions restricted to AZFb or AZFc can result in a
range of phenotypes from Sertoli cell–only syndrome
to moderate oligospermia,14 whereas microdeletions
restricted to the AZFd region may present with mild
oligospermia or even normal sperm counts with
abnormal sperm morphology.14

The evidence provided by deletion studies indicates
that at least three and possibly four distinct functional
regions exist in the Yq region. But direct phenotype-
genotype correlations cannot currently be made, which
is not surprising when considering that the deletions

identified vary in size and thus may interrupt one or
more genes present in each region. The estimated sizes
of each region are: 1 Mb for AZFa, 1.5 Mb for AZFb,
and 3 Mb for AZFc.15 Consequently, each region is
large enough to contain a number of candidate genes
that may be disrupted by the microdeletions observed
in infertile men.

Candidate genes for spermatogenesis

A number of candidate genes for AZF have been de-
scribed. However, only a few genes or gene families
have been studied in detail. These include the ‘deleted in
azoospermia’ (DAZ),16 RNA-binding motif for
Y-located RNA (RBMY1A1)—formerly known as
Y-chromosome RNA recognition motif (YRRM),42

and the Y-linked homologue of the Drosophila fat
facets–related X gene (USP9Y, formerly DFFRY).43

The DAZ gene family is reported to be the most
frequently deleted AZF candidate gene and is located
in the AZFc region.16 Originally thought to be a
single-copy gene, DAZ is now known to be a multicopy
gene family, which includes DAZ2, formerly known
as spermatogenesis gene on Y (SPGY),13 and its auto-
somal copy on the short arm of chromosome 3 (DAZL1).13

The DAZ genes are expressed exclusively in testicular
tissue and encode proteins that contain an RNA-
recognition motif, thereby suggesting that they have a
regulatory role in RNA metabolism.44 They share a
high percentage of sequence homology with the mouse
gene Dazla 45 and the Drosophila gene Boule,46 and it
has been hypothesised that DAZ has been conserved
throughout evolution and performs similar roles as
Dazla and Boule, which seem to regulate the meiotic
cell cycle.46 This would mean that all men with DAZ
deletions would be incapable of producing mature
sperm; however, some men with oligospermia have
been shown to carry DAZ deletions.8, 13,14

Saxena et al47 have shown that the DAZ gene fam-
ily has evolved only recently on the Y chromosome
during primate evolution and that it originates from an
autosomal homologue on the short arm of chromosome
3. Immunostaining studies using antibodies to DAZ2
have shown that DAZ proteins are present in the in-
nermost layer of the male germ-cell epithelium and in
the tails of mature sperm.44 Habermann et al44 have
hypothesised that the DAZ protein in the germ-cell
epithelium regulates the storage or transport of testis-
specific messenger RNA (mRNA) in late spermatids.
The originally proposed function of DAZ genes needs
to be re-evaluated and further studies performed
before their specific function can be elucidated.44
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Fig. Schematic diagram of the Y chromosome,
showing the AZF loci and their candidate genes
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The first AZF candidate gene to be isolated was
RBMY1A1.37 This gene family consists of 20 to 50
genes and pseudogenes that are distributed over both
arms of the Y chromosome. The multicopy nature of
RBMY1A1 has made it difficult to assign the gene with
a specific function in spermatogenesis.48 An immuno-
histochemical study has shown that the RBMY1A1
protein is localised in the nucleus of human male germ
cells, specifically to the AZFb region of the Y chromo-
some.49 The RBMY1A1 gene cluster in the AZFb
region may thus contain the only functional copies of
the RBMY1A1 gene, and their presence in male germ
cells indicates their testis-specific expression.49 The
RBMY1A1 genes are members of the heterogeneous
nuclear ribonucleoprotein G (hnRNPG) family of pro-
teins, which are associated with nuclear polyadenylated
RNA and believed to function in pre-RNA packaging,
mRNA transport to the cytoplasm, and RNA splicing.50

The RBMY1A1 gene family has evolved from an
hnRNPG-like ancestor and was copied to the Y
chromosome before the diversification of mammals,
as it is also present on the Y chromosome of marsu-
pials.51 The evidence that RBMY1A1 genes have been
conserved on the Y chromosome throughout evolution
and are expressed specifically in male germ cells
indicates an important role in spermatogenesis.52 How-
ever, the relatively low frequency of deletions in
RBMY1A1, compared with the frequency of deletions
in the DAZ genes, appears to support the hypothesis of
a rather minor role for RBMY1A1 genes in controlling
spermatogenesis.53

The first major gene identified as an AZFa gene
was USP9Y.43 Considerably less is known about USP9Y
than the DAZ and RBMY1A1 gene families. Initially,
only three infertile men were identified with USP9Y
deletions; however, all had the entire AZFa region
deleted, and it is possible that other, unidentified genes
may have also been involved in their infertility.43 The
USP9Y gene shows homology to an X-linked gene
DFFRX, which appears to function as a carboxyl-
terminus ubiquitin hydrolase.43 Unlike DAZ and
RBMY1A1, the USP9Y protein is not confined to the
testis, but is as ubiquitously expressed as the DFFRX
protein.43 A recent study found 12.5% of azoospermic
men showed deletions of USP9Y, including one
individual in whom the deletion was restricted to the
USP9Y gene.52 Sun et al53 have found a de novo muta-
tion in the USP9Y gene, in which four base pairs are
deleted from a splice donor site. This deletion would
cause an exon to be skipped and the protein to be
truncated.53 While USP9Y is a functional candidate for
the AZFa region, the exact function that USP9Y may
play in spermatogenesis remains to be demonstrated.

Another two X-Y homologous genes have been
mapped to the AZFa region: DBY (dead box on Y) and
UTY (ubiquitous transcribed teratricopeptide repeat
gene on the Y chromosome), both of which are ex-
pressed as ubiquitously as USP9Y.54 The centromere
to telomere order of the genes—USP9Y, DBY, and
UTY—is conserved between the mouse and human,
thus suggesting an ancient organisation of these genes
on the Y chromosome that predates the divergence of
the human and mouse lineages.55 Sargent et al55 have
isolated another potential spermatogenesis gene in the
AZFa region—namely, AZFaT1. The expression of
AZFaT1, USP9Y, UTY, and DBY have been examined
in four patients with AZFa microdeletions.55 In three
of the patients AZFaT1, USP9Y, and DBY were deleted,
but UTY was intact; all four patients had the Sertoli
cell–only syndrome. The fourth patient, however, had
only AZFaT1 and USP9Y deleted but retained the DBY
and UTY genes; this patient had a milder oligospermic
phenotype.55 These results suggest that the deletion
of AZFaT1 and/or USP9Y results in a less severe
phenotype and the additional deletion of DBY is
required for the Sertoli cell–only syndrome.55

Other genes have been isolated from the Y chromo-
some and are expressed specifically in the testis, but
lie outside of the AZF a, b, and c regions.54 These are
BPY1, CDY, and XKRY from the Yq arm and
PRY, TSPY, TTY1, and TTY2 from the Yp arm.54 Hence,
many genes are likely to play critical roles in the
control of spermatogenesis.

Clinical application of Yq screening

The aetiology of many kinds of male infertility is still
poorly understood. The study of Yq microdeletions
will help in the development of better diagnostic meth-
ods and the expansion of the current knowledge of
spermatogenesis. Many factors, including the many
repetitive sequences on the Y chromosome, compli-
cate the interpretation of the results from Yq micro-
deletion assays and the study of candidate genes that
have critical functions in spermatogenesis.36 Never-
theless, it is generally believed that men with severe
male infertility should be screened for Yq micro-
deletions as a part of their pretreatment investigations.12

This step is particularly important, because ICSI-
derived sons are most likely to inherit the Yq micro-
deletion, which may result in subsequent infertility.8,38,39

As more reproductive medicine laboratories start
undertaking the Yq microdeletion assay, it is apparent
that methods will vary greatly, particularly in the
number of STSs used and the verification of deletions
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seen.12 Approximately 43 STSs may be enough to
identify all the known deletion sites associated with
male infertility.14 Included in this selection is the
RBMY1A1 locus, which is a member of a family of
genes that is located on different sites on both arms of
the Y chromosome. A deletion detected in this locus
must be verified by a Southern blot assay14 In addi-
tion, all deletions of a single STS should be verified
by Southern blot assay to rule out failed PCR amplifi-
cation.12 By regulating the methods used, men with
infertility will receive accurate reports on which they
can make informed decisions regarding their future
treatment options.
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