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Laboratory aspects of assisted reproduction

SEMINAR PAPERS

Introduction

Assisted reproductive technology has revolutionised
the treatment of infertility. In this paper, the major
recent advances in the laboratory aspects of assisted
reproduction will be reviewed in two parts. The first
part will review the relatively recently developed
techniques that have become widely used in assisted
reproduction. The second part will focus on techniques
that are currently being developed and are likely to
have a significant impact on assisted reproductive
technology.

Established techniques

Intracytoplasmic sperm injection
Intracytoplasmic sperm injection (ICSI) has had a
considerable impact on the treatment of male-factor
infertility. The technique involves the injection of a
single spermatozoon into an oocyte. Since its develop-
ment in 1992,1 ICSI has helped subfertile couples at
most assisted reproduction units. The fertilisation out-
come after ICSI is little affected by most conventional
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criteria of sperm quality. Since the requirement for
spermatozoa during ICSI is minimal, ICSI can be used
in almost all men in whom spermatozoa can be found
in the ejaculate, epididymis, or testis.

The first baby conceived using ICSI in Hong
Kong was born in 1995 at the Queen Mary Hospital
(QMH). In 1998, the fertilisation rate of the ICSI
technique at the QMH was approximately 60%.2

The results of ICSI with spermatozoa obtained from
the ejaculate, by microsurgical epididymal sperm
aspiration, or by testicular sperm extraction are shown
in Table 1.2

Studies of obstetric outcomes, the malformation
rates, and karyotype abnormalities of children born
after ICSI have been reported by a number of groups.3

Table 1. Outcomes of intracytoplasmic sperm injection
at the Queen Mary Hospital (1998)2

ICSI* MESA† + TESE‡ +
alone  ICSI ICSI

Fertilisation rate 64.0% 62.4% 55.4%
 Mean No. of embryos 2.5 2.2 2.2
 per transfer
Pregnancy rate per 21.5% 20.8% 18.2%
 transfer
Multiple pregnancy rate 30.4% 40.0% -

* ICSI intracytoplasmic sperm injection
† MESA microsurgical epididymal sperm aspiration
‡ TESE testicular sperm extraction
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In general, these children are not associated with a
higher incidence of congenital malformations, com-
pared with those derived from conventional in vitro
fertilisation (IVF). However, a slight increase in the
incidence of chromosomal abnormalities has been
shown in a follow-up study of ICSI children.4

In a recent study that used sibling oocytes from
couples with tubal infertility and normospermic semen,
no difference was seen in the implantation potential
of embryos obtained by conventional IVF and ICSI.5

However, the use of ICSI for all couples requiring as-
sisted reproduction should be discouraged for two rea-
sons. Firstly, male infertility has been associated with
a number of genetic defects, such as Y-chromosome
microdeletion and chromosomal aneuploidy. The
chance of having such an abnormality is higher in
patients with severe male-factor infertility.6,7 The
transmission of genetic defects from the father to the
ICSI-derived baby has been demonstrated by a study
in Hong Kong8 and elsewhere.9 Abnormal spermato-
zoa, which would normally have a low or no chance
of fertilising an oocyte, are able to do so with ICSI
because there is no means of distinguishing them from
the normal spermatozoa at the time of ICSI. Thus, the
indiscriminate use of ICSI propagates genetic defects
in abnormal spermatozoa. Secondly, transmission of
foreign DNA by ICSI has recently been demonstrated.10

This has raised concerns that ICSI might transfer
infectious materials to the next generation.11

When no spermatozoa can be found, spermatid
injection has been suggested as an alternative, and
pregnancies have been obtained with this procedure.12

The outcome, however, is much less satisfactory than
when ICSI with mature spermatozoa is used.13 There
are two inherent technical problems with this pro-
cedure. Firstly, it is difficult to identify round sperm-
atids among all the other round cells in the testicular
biopsy. Secondly, round spermatids from men with
complete spermiogenesis failure are more likely to have
apoptosis-related DNA fragmentation than are sperm-
atids from men in whom late elongated spermatids
or spermatozoa can occasionally be found.14 These
problems can be partially solved by culturing the germ
cells in vitro. This procedure yields spermatids that
have a higher degree of cytoplasmic maturation,
thereby facilitating spermatid recognition.15 This
technique also helps to overcome the danger of inad-
vertently using apoptotic spermatids for ICSI.16 A preg-
nancy from the injection of spermatid that matured
in vitro has recently been reported.17 The injection of
round spermatids was rendered unnecessary by Silber
et al,18 who found that the presence of round spermatids

was always associated with the presence of elongated
spermatids or mature spermatozoa in the testicular
biopsy.

Pre-implantation genetic diagnosis
The development of molecular biology techniques has
made it possible to identify chromosomal and gene
defects in just one or two cells. This advancement has
led to the development of pre-implantation genetic
diagnosis (PGD),19 which can detect many common
chromosomal abnormalities and inherited single-gene
defects. In this procedure, one or two blastomeres,
usually from an eight-cell–stage embryo, are removed
and the genetic make-up in the extracted blastomeres
is determined. The fundamental assumption is that
these blastomeres are identical to those in the rest of
the embryo. Hence, only embryos from which extracted
blastomeres show normal genomes are transferred.
Similarly, the polar body of oocytes or zygotes can be
used for PGD.

There are two methods for detecting genetic ab-
normalities in a single cell. Polymerase chain reaction
(PCR) analysis is used to detect genetic abnormalities
at gene level. Although this technique is very sensi-
tive, it does not provide information about the chromo-
some copy number. In contrast, multicolour fluorescent
in situ hybridisation (FISH) not only detects abnormal-
ities in autosomes, but also the number of sex chromo-
somes.20 Currently, FISH is the preferred method of
identifying the sex of an embryo and of detecting
aneuploidy when women are of advanced maternal age.
The detection of aneuploidy by PGD in human em-
bryos has recently been shown to reduce embryo loss
after implantation, although the implantation rates were
not significantly improved.21

Pre-implantation genetic diagnosis may not be
absolutely accurate, because of the occurrence of
chromosomal mosaicism in human embryos—that is,
two or more blastomeres from the same embryo hav-
ing chromosome complements that are different
from the remaining blastomeres. Studies using FISH
have shown that a significant number of normally
developing embryos display chromosome mosaic-
ism.22,23 These chromosomal abnormalities are related
to the impairment of embryo development, advanced
maternal age, embryo culture conditions, and hormo-
nal stimulation.24 Another reason that PGD may not
be absolutely accurate is the failure of PCR amplifica-
tion of one of the gene alleles, usually termed as al-
lelic dropout. To minimise this effect, PCR conditions
need to be optimised for each specific gene allele prior
to PGD.
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It is now possible to screen for single-gene dis-
orders and chromosomal abnormalities simultaneously
in a single blastomere.25 Attempts have also been made
to develop a simple method of karyotyping metaphase
chromosomes of the human blastomere.26

Co-culture versus sequential culture
It is generally accepted that the culture conditions for
human embryos are suboptimal. Two methods have
been used to solve this problem: co-culture of embryos
with somatic cells and the use of different culture media
for different stages of embryo development (sequential
culture). Co-culture received considerable interest in
the early 1990s, with various studies having shown that
co-culture improves the morphological development
and implantation rate of treated embryos. Co-culture
is particularly helpful to infertile couples with recurrent
implantation failure. The oviductal cell is the most
logical somatic cell to be used for co-culture with early
pre-implantation embryos, as the oviduct is the natural
site in which these embryos grow during early develop-
ment. We have previously shown that co-culture with
human oviductal cells improves the maturation rate of
blastocysts and decreases the fragmentation rate of
developing human embryos, and that improvement is
more marked when co-culture is started earlier.27 In a
randomised controlled trial, co-culture with human
oviductal cells also enhanced the implantation rate of
human embryos in the assisted reproduction programme
at the QMH.28 However, co-culture involves compli-
cated laboratory techniques and screening, and hence it
is not suitable for routine use.

Cleaving embryos normally develop in the oviduct,
whereas the morulae and blastocysts develop in the
uterine cavity. These two stages of embryo growth
have different nutritive requirements, which match
quite well with the constituents in the oviduct and the
uterine cavity. Thus, it is not surprising that the use of
sequential culture media specific for different stages
of embryo development produces better blastocysts in
vitro; the resultant pregnancy rate is at least as good as
that seen with co-culture.29 Because of its simplicity,
sequential culture is rapidly becoming the method of
choice for producing human blastocysts.

Blastocyst transfer
Early-embryo culture media do not support the long-term
growth of human embryos. Hence, assisted reproduction
programmes usually involve the transfer of day-2 or
day-3 cleaving embryos to the uterus—an unusual site
for early embryo development. Co-culture and sequen-
tial culture allow the production of sufficient blastocysts
to make blastocyst transfer practical. There are a number

of advantages of blastocyst transfer. Firstly, blastocysts
are transferred to a natural site of development so the
development of embryos and the endometrium are
better synchronised. This synchronisation may theoret-
ically enhance later implantation. Secondly, in some
women, the uterus may fail to give adequate support
to cleaving embryos, thereby resulting in the failure of
IVF. Blastocyst transfer may overcome this problem.
Blastocyst culture may be useful in patients with mul-
tiple implantation failure,30 although these data await
confirmation by randomised studies. Thirdly, blastocyst
transfer allows better selection of embryos; only good-
quality embryos are able to develop into blastocysts. As
a result, fewer embryos can be transferred. High-order
multiple pregnancy can be eliminated by the transfer
of just two embryos.31 Fourthly, the risk of miscarriage
may be reduced, because chromosomally abnormal
embryos tend to have retarded development and are
less likely to be selected for transfer.32

A problem with blastocyst transfer is that only ap-
proximately half of the fertilised eggs develop into
blastocysts.29,33 Some patients may therefore have no
embryos available for transfer. By carefully selecting
patients, the percentage of patients without blastocysts
could be low.34 Although the failure of blastocyst forma-
tion in vitro may indicate poor quality of the oocyte,
sperm, or embryo,35 it is also possible that the current
sequential media are still not yet optimal. Some embryos
that fail to reach the blastocyst stage in vitro might
have given rise to offspring, had they been transferred
earlier. Studies of methods that further improve currently
used sequential culture system media are ongoing. At
the QMH, a human oviductal cell–mouse embryo co-
culture system has been developed for this purpose.
Our data show that human oviductal cells improve the
development of mouse embryos in vitro by the produc-
tion of at least three embryotrophic factors.36,37 In future,
the supplementation of these factors to the culture me-
dium may further enhance human embryo development.

With the increasing use of blastocyst culture and
transfer as a routine treatment in human clinical in vitro
fertilisation, there is an increasing need for a reliable
procedure to cryopreserve blastocysts. The conventional
slow-freezing protocol is suboptimal for blastocysts,
as the implantation rate of frozen blastocysts is only
approximately half of that reported for the transfer of
fresh blastocysts.38 A new vitrification method is being
developed, with promising results.39

Blastocyst transfer versus cleaving embryo transfer
Although blastocyst transfer has provided good
results, Edwards and Beard40 have questioned whether
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blastocyst culture is necessary in selecting embryos
with good implantation potential. Scott and Smith41

were able to select pronuclear embryos with an im-
plantation rate of 28%. Similarly, Van Royen et al42

have demonstrated that the transfer of a single day-3
embryo could have an acceptable pregnancy rate if a
top-quality embryo were available. The implantation
rates of the selected embryos in their study were 35%
and 49% with one or two top-quality embryo trans-
fers, respectively. These implantation rates are similar
to those achieved by the transfer of blastocysts, as
reported by Gardner et al.29 The approach of trans-
ferring early embryos using new criteria for good-
quality early embryos is attractive, because it involves
a shorter culture time at a lower cost, and avoids the
risk of having no blastocyst available for transfer.

There is, however, concern about the possibility of
selecting good early-cleaving embryos before the
activation of the embryonic genome, which occurs at
day 3 in human embryos. In an elegant analysis of
published reports, Edwards and Beard43 hypothesised
that cell determination in embryos might occur very
early in embryonic development, before the supposed
time for embryonic genome activation. This cell de-
termination is manifested morphologically as polarity
of the oocyte/embryo. In line with their proposal are
the findings that the transcription levels at the one-cell
stage are critical for later development.44,45 Recent stud-
ies have also shown the occurrence of polarity in early
human embryos.46,47 Thus, important information may
be obtained from very early embryos that allow the
selection of those with the best implantation potential.

Managing male genetic abnormalities
Recent studies have shown that men with severe
male-factor infertility have a higher incidence of
chromosomal or genetic abnormalities. Attention has
been made to microdeletions in the Y chromosome of
these men. The DAZ (deleted in azoospermia) gene is
often found to be deleted in these men. Preliminary
data from the QMH have shown that 9.1% of men
with the non-obstructive azoospermia or severe oligo-
spermia in the Chinese population in Hong Kong
have DAZ deletions.7 Transmission of a DAZ deletion
from the father to his ICSI-derived son has also been
demonstrated at the QMH.8

Developing techniques

In vitro oocyte maturation
While the use of ICSI overcomes the fertilisation prob-
lems associated with culturing immature oocytes, there
is an increased interest in retrieving oocytes without

gonadotrophic stimulation or with limited gonado-
trophic stimulation and then maturing them in vitro
for embryo transfer. The advantages of maturing oocytes
in vitro are that only a minimal amount of expensive drugs
are needed; there is no risk of ovarian hyperstimulation,
deep vein thrombosis, or other possible long-term side
effects of fertility drugs including ovarian cancer; and
that a large pool of pre-antral and antral oocytes is
theoretically available in the early follicular phase of
the cycle. Human oocytes can be matured from small
antral follicles, fertilised in vitro, and give rise to live
births following embryo transfer.48,49 Currently, the
success rate with in vitro oocyte maturation is low and
the culture system needs to be improved.

Oocyte cryopreservation
The ability to freeze and store human oocytes success-
fully allows the circumvention of moral, ethical, and
legal problems associated with embryo freezing.
Oocyte cryopreservation also preserves the reproduct-
ive potential of women who, for a variety of medical
reasons, are likely to lose ovarian function prematurely.
Banks of frozen donated oocytes would facilitate
the donation process by waiving the requirement for
donor-recipient synchrony.

Gook et al50 have demonstrated that oocytes can
survive the conventional embryo cryopreservation
protocol without compromising spindle integrity, and
with normal karyotype.51 Pregnancies and live births
of cryopreserved oocytes that have been fertilised
with ICSI have been obtained.52 However, the success
rate of oocyte cryopreservation remains low and new
methods for human oocyte cryopreservation are being
investigated.53

Cryopreservation of the ovarian cortex
An alternative to cryopreserving mature human oocytes
is to cryopreserve ovarian tissue that contains imma-
ture oocytes within the ovarian cortex. This approach
has the additional advantage over oocyte cryopreser-
vation of preserving the fertility of cancer patients.
Detecting the cancer early and immediately starting
treatment with chemotherapy and/or radiotherapy
improves the long-term survival for patients with many
types of cancer.54 Unfortunately, these treatments
may render women either temporarily or permanently
infertile and the urgency of such treatments precludes
harvesting mature oocytes from many of these patients.
Cryopreserving the ovarian cortex would be a suitable
option in these cases. The transplantation of cryopre-
served ovarian tissue has been able to restore fertility
in animals, including marmosets.55-57 However, efficacy
of this technique in humans has yet to be determined.
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Follicle culture
In biopsy samples of ovarian cortex, the numbers of
primordial follicles present are significantly higher than
those in the later development stages.58 Cryopreserved
ovarian tissue of cancer patients can be used for trans-
plantation, but this would carry a risk of transmission
of the malignancy.59 The other option is to culture the
primordial and primary follicles that have come from
the cryopreserved biopsy sample of cortical tissue. In
studies of mice, live offspring have been born from
oocytes that have matured from primordial follicles
in vitro.60 Although it is possible to isolate primordial
and primary human follicles, it has not been possible
to establish long-term culture of these follicles.61 The
development of human follicles in vitro is better in
tissue slices than in the partially isolated form.62 In
ovarian slices, human primordial and primary follicles
can be cultured to reach secondary and occasionally
early-antral follicles.63

Conclusion

A number of advances have been made in the labora-
tory aspects of assisted reproduction in the past dec-
ade. These improvements have extended the range
of patients to be treated by assisted reproduction.
With the use of molecular biology, more is known about
the genetic causes of infertility, so better counselling
can be offered to the infertile patients. Although a
better understanding of the development of the oocyte/
follicle and embryo has allowed us to provide a better
culture environment for the oocyte and embryo, further
research is required to find the ideal culture media.
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