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K E Y  M E S S A G E S 

1. Decreased vessel density is associated with 
impaired visual sensitivity in the early stage of 
normal-tension glaucoma.

2. Patterns of retinal vasculature changes differ 
between normal-tension glaucoma and primary 
angle-closure glaucoma.

3. Lower retinal vasculature density at baseline is 
associated with faster progression of normal-
tension glaucoma.

4. Vascular changes develop prior to retinal nerve 
fibre layer (RNFL) thinning in normal-tension 
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Introduction
Glaucoma is a major cause of irreversible blindness 
worldwide.1 It is characterised by retinal ganglion 
cell (RGC) degeneration, which results in thinning 
of the optic disc and retinal nerve fibre layer (RNFL) 
as well as visual field loss. The pathogenesis of 
glaucoma remains unknown. Intraocular pressure 
(IOP) reduction is the only effective therapeutic 
strategy to slow glaucoma progression, but some 
patients experience continued progression despite 
clinically significant IOP reduction.
 Various vascular mechanisms such as decreased 
perfusion pressure, vascular dysregulation, and 
vasospasm may involve in the pathogenesis and 
progression of glaucoma.2,3 Both IOP and vascular 
factors are likely to cause high-tension glaucoma 
(primary open-angle glaucoma and primary angle-
closure glaucoma [PACG]) and normal-tension 
glaucoma (NTG). Retinal arteriolar narrowing is 
associated with the 10-year incidence of glaucoma, 
independent of IOP and ocular perfusion pressure.4

 Optical coherence tomography angiography 
(OCT-A) enables quantitative evaluation of retinal 
and choroidal microvasculature. Microvascular 
reduction is associated with visual field defects 
and RGC loss in glaucoma. We used OCT-A to 
quantify capillary networks and evaluate the causal 
relationship between retinal vascular changes and 
RGC loss in glaucoma.
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Methods
This study was conducted from 1 April 2018 to 
31 July 2022. Patients with glaucoma and healthy 
controls were consecutively recruited for ophthalmic 
examinations of visual acuity, IOP, refraction, axial 
length, and visual field, using dark-room gonioscopy, 
OCT, and OCT-A imaging. All patients with 
glaucoma were followed up every 6 months.
 OCT-A imaging was performed using a 
volume scan over a 3×3-mm macular region centred 
on the optic nerve head and the fovea. In the 
macular region, only the superficial capillary plexus 
was analysed because the deep capillary plexus can 
be affected by shadow graphical projection artefacts 
from the superficial capillary plexus. In the optic disc 
region, only the radial peripapillary capillary layer 
was analysed because this layer contains the blood 
supply for the RNFL layer. A customised MATLAB 
programme was used to process OCT-A images and 
generate a series of quantitative OCT-A metrics. 
Multiple quantitative vascular parameters were 
generated, including vessel density (VD), fractal 
dimension, and vessel diameter index.
 For cross-sectional analyses, generalised 
estimating equations were used to correct for inter-
eye correlations. Linear regression was performed 
to examine associations between OCT-A metrics 
and glaucoma parameters. For longitudinal analysis, 
the rates of change in VD and RNFL thickness were 
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glaucoma, whereas RNFL thinning develops 
prior to vascular changes in primary angle-
closure glaucoma.
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FIG.  Quantitative peripapillary microvasculature metrics in optical coherence tomography angiography (OCT-A) images of patients with normal-
tension glaucoma (NTG), patients with primary angle-closure glaucoma (PACG), and healthy controls.
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TABLE 2.  Age- and baseline measurement-adjusted rates of change in vessel density and retinal nerve fibre layer thickness

Variables Patients with 
normal-tension 

glaucoma*

P value Patients with 
primary angle-

closure glaucoma*

P value Difference* P value

Vessel density, %/y

Global -1.65 (-2.40 to -0.89) <0.001 -0.66 (-1.32 to -0.01) 0.047 -1.08 (-1.90 to -0.27) 0.009

Temporal -2.06 (-3.08 to -1.05) <0.001 -0.49 (-1.36 to 0.38) 0.262 -1.57 (-2.91 to -0.23) 0.022

Superotemporal -2.23 (-3.39 to -1.08) <0.001 -0.75 (-1.76 to 0.26) 0.140 -1.46 (-2.65 to -0.26) 0.017

Inferotemporal -1.63 (-2.77 to -0.49) 0.006 -0.73 (-1.73 to 0.26) 0.143 -0.99 (-2.23 to 0.25) 0.117

Superonasal -1.09 (-2.19 to 0.00) 0.050 -0.46 (-1.54 to 0.61) 0.394 -0.86 (-2.09 to 0.38) 0.172

Inferonasal -1.61 (-2.80 to -0.41) 0.009 -1.25 (-2.58 to 0.09) 0.067 -0.67 (-2.03 to 0.69) 0.334

Nasal -1.39 (-2.37 to -0.42) 0.006 -0.67 (-1.57 to 0.23) 0.138 -0.74 (-1.81 to 0.34) 0.178

Retinal nerve fibre layer thickness, µm/y

Global -0.25 (-0.92 to 0.43) 0.467 -0.62 (-1.14 to -0.10) 0.020 0.41 (-0.48 to 1.30) 0.360

Temporal -0.33 (-1.10 to 0.44) 0.399 -0.45 (-1.03 to 0.13) 0.127 0.12 (-0.85 to 1.09) 0.801

Superotemporal -1.11 (-2.06 to -0.17) 0.022 -0.43 (-1.34 to 0.48) 0.354 -0.72 (-2.03 to 0.58) 0.276

Inferotemporal -1.76 (-2.79 to -0.73) 0.001 -0.97 (-1.79 to -0.16) 0.019 -0.63 (-1.95 to 0.68) 0.342

Superonasal -0.89 (-1.59 to -0.18) 0.013 -0.96 (-1.82 to -0.11) 0.028 0.07 (-0.95 to 1.10) 0.889

Inferonasal -0.75 (-1.75 to 0.25) 0.138 -0.84 (-1.70 to 0.01) 0.053 0.03 (-1.28 to 1.34) 0.969

Nasal -0.30 (-1.35 to 0.75) 0.569 -0.37 (-0.95 to 0.20) 0.197 0.05 (-1.13 to 1.23) 0.933

* Data are presented as coefficient (95% confidence interval)

* Data are presented as mean (95% confidence interval) per standard-deviation decrease

TABLE 1.  Associations of circumpapillary vessel density (VD) and circumpapillary fractal dimension (FD) with mean retinal nerve 
fibre layer (RNFL) thickness

Metric Univariable model* Multivariable model*

RNFL thickness, µm P value RNFL thickness, µm P value

Patients with primary angle-closure 
glaucoma

Circumpapillary VD, % -5.855 (-9.567 to -2.143) 0.002 -4.242 (-8.120 to -0.363) 0.032

Circumpapillary FD -9.297 (-11.682 to -6.913) <0.001 -8.894 (-11.925 to -5.864) <0.001

Patients with normal-tension glaucoma

Circumpapillary VD, % -4.998 (-7.674 to -2.322) <0.001 -5.531 (-9.472 to -1.590) 0.006

Circumpapillary FD -9.831 (-15.901 to -3.761) 0.002 -12.064 (-17.195 to -6.932) <0.001

Controls

Circumpapillary VD, % 1.918 (-0.684 to 4.520) 0.148 2.221 (-0.197 to 4.638) 0.072

Circumpapillary FD -0.646 (-3.284 to 1.992) 0.631 -1.325 (-3.891 to 1.241) 0.312
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estimated by linear mixed-effects modelling. Mean 
differences in rates of change between diagnostic 
groups were compared by linear mixed-effects 
modelling.

Results
In total, 250 patients with NTG, 250 patients with 
PACG, and 130 healthy controls were recruited. 
Their quantitative peripapillary microvasculature 
metrics on OCT-A were compared (Fig). Decreased 
circumpapillary VD and circumpapillary fractal 
dimension were associated with decreased RNFL 
thickness in both NTG and PACG groups (all 
P≤0.032, Table 1). The associations between OCT-A 
metrics and RNFL thickness were stronger in the 
NTG group than in the PACG group.
 In the NTG group, the rate of VD loss was 
significantly different from zero in each sector 
and global region (all P≤0.05); the rate of RNFL 
thinning was significantly different from zero in the 
superotemporal, inferotemporal, and superonasal 
sectors (P≤0.022) [Table 2]. In the PACG group, 
the rate of VD loss was significantly different from 
zero in the global region (P=0.047); the rate of RNFL 
thinning was significantly different from zero in the 
inferotemporal and superonasal sectors as well as 
the global region (all P≤0.028). Compared with the 
PACG group, the NTG group had more rapid VD 
loss in the global region (P=0.009), temporal sector 
(P=0.022), and superotemporal sector (P=0.017).

Discussion
We used OCT-A to compare peripapillary 
microvasculature between two subtypes of early 
glaucoma with different pathogeneses: NTG is 
less IOP-dependent and has a stronger vascular 
pathogenic component, whereas PACG is more 
IOP-dependent.5 Global circumpapillary VD was 
significantly reduced in NTG eyes, compared with 
PACG eyes, despite comparable RNFL thickness and 
disease severity. Furthermore, NTG eyes exhibited 
significantly lower circumpapillary VDs in the 
inferotemporal and inferonasal sectors, compared 
with PACG eyes, despite similar RNFL thicknesses 
in these sectors. These findings suggest that ocular 
perfusion change patterns differ between the two 
glaucoma subtypes.
 The rates of RNFL thinning were detectable 
in the superotemporal, inferotemporal, and 
superonasal sectors of NTG eyes. Focal RNFL 
thinning in the superotemporal and inferotemporal 
sectors corresponds to the initial stages of optic nerve 

damage in glaucomatous eyes. NTG eyes exhibited 
substantial VD loss over time in each sector and 
global region; such loss was more uniform than the 
observed RNFL thinning. These findings support 
the hypothesis that glaucomatous RNFL damage 
is a secondary consequence of insufficient ocular 
blood supply in NTG. Notably, our results may have 
been influenced by age-related changes. Based on 
the relatively short follow-up period, we believe 
that the rate of change is primarily disease related. 
Nonetheless, further longitudinal assessment is 
needed to clarify age-related changes in the VD and 
RNFL of healthy individuals.

Conclusion
This study provided evidence on the roles of retinal 
vascular changes in the pathogenesis of different 
glaucoma subtypes. Further studies are warranted 
to explore novel interventions based on vascular 
protection mechanisms.
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