A decade of hepatology—more refinements than breakthroughs

This month’s *Journal* contains the first of two parts of a collection of Seminar Papers on Liver Disease, all contributed by local authors. Such a heavy concentration on diseases of a single organ is surely justified by the enormous impact that liver disease has on the health of our community. This ranges from the morbidity and mortality associated with viral hepatitis, the multiple complications arising from chronic liver disease, through to primary and secondary liver cell cancer.

What changes would a hepatologist who had been asleep for the past decade notice if they were to pick up this issue? At the head of the list would certainly be advances in the identification of, and immunization against, hepatitis viruses. Hepatitis B vaccination at birth is now firmly established, but the groundwork for this advance had been laid down in the previous decade. The identification of the hepatitis C virus (HCV) and the slow but steady analysis of its natural history has been of major significance; a realisation of its worldwide impact on liver disease is growing by the day. Likewise, hepatitis E has been identified as the cause of enterically transmitted non-A non-B hepatitis and can now be tested for serologically. This virus is clearly going to become a relatively more important problem, as other hepatitis viruses become more controllable.

Although it is easy to say tests for HCV and hepatitis E virus (HEV) have, to date, had little direct impact on patients who suffer from their effects, the fact that doctors can now diagnose patients more rapidly and offer a more accurate diagnosis is clearly a crucial first step before therapeutic improvements can be developed. Both vaccination against hepatitis A and screening of blood donors for HCV will have a major impact on the health of our community.

In other areas it would seem that progress has been slow and it has been a decade of steady refinement rather than breakthroughs, particularly from a therapeutic point of view. In autoimmune hepatitis, we are still relying on the same drugs as were used in the 1970s, albeit with a little more sophistication. The list of aetiological agents in hepatocellular carcinoma (HCC) has changed little, apart from the addition of hepatitis C and while the recognition of the interaction of the P53 gene and aflatoxin is a significant advance, a coherent model for hepatic carcinogenesis is still elusive.

With both primary and secondary liver cancer we still rely on surgical resection as the only hope of long term survival. Likewise, most of the technical problems associated with liver transplantation appear to have been resolved and progress lies in the steady improvement of immunosuppressive regimens and infection control as described in this issue. Nonetheless, those patients undergoing liver transplantation or treatment for primary or secondary HCC or autoimmune hepatitis can do so with much more confidence in 1997 than they could in 1987 in the knowledge that the procedures offered are much safer.

Most of the breakthroughs and refinements described in this issue, however, have come, not from clinicians but from laboratory workers and pharmaceutical companies or—in the case of radiology—from technological advances. The one area where clinicians should be having a real impact is in clinical trials that evaluate these new technologies. As noted in several of the articles, many techniques that have been applied in clinical practice for several years, have still not undergone rigorous controlled randomised clinical trials. Professor Henry Ngan emphasises that if we want hard data, accrued in a controlled and randomised setting for a treatment such as transcatheter arterial chemoembolization for liver cancer, we have to rely on a clinical trial done in a low incidence area of the world where 24 centres were required to recruit the 50 patients in the treatment arm. As he says, a single-centre trial would be greatly preferred for several reasons. However, if such studies are not carried out in Hong Kong, where and when will they ever be done?

Philip Johnson, MD, FRCP
Department of Clinical Oncology
The Chinese University of Hong Kong
Prince of Wales Hospital
Shatin, Hong Kong