This report describes a 68-year-old Chinese man who was diagnosed with Good syndrome 6 years after initial presentation when he underwent thymectomy. He presented with recurrent pneumonia, diarrhoea, weight loss, and visual symptoms. Extensive examination for anaemia and neutropenia was done, yet no conclusive diagnosis could be derived. During his last admission for pneumonia, his history of AB thymoma suggested the possibility of Good syndrome. Immunological testing revealed low T cells, absent B cells, and low immunoglobulin M and immunoglobulin G levels. Moreover, he had histologically identified cytomegalovirus pneumonia, cytomegalovirus colitis, and fundoscopic features of cytomegalovirus retinitis. He was treated with a 2-week course of intravenous ganciclovir, lifelong oral valganciclovir, and monthly immunoglobulin infusion. It took 6 years for the diagnosis to be established, therefore, early attention and vigorous search for such potentially treatable conditions in post-thymectomy patients presenting with recurrent infections is recommended.

Case report

A 68-year-old Chinese man, who was an ex-smoker and a non-drinker first presented to the Department of Medicine, Caritas Medical Centre, Hong Kong, in 2003 with a persistent cough. Computed tomography (CT) of the thorax identified a 10 x 10 cm thymoma. He underwent thymectomy and the pathological staging was type AB minimally invasive thymoma (World Health Organization classification).

Between July 2003 and September 2009, he underwent multiple hospital admissions for fever, chronic cough, chronic diarrhoea, weight loss, and visual disturbance. In July 2003, he was admitted for fever and cough. His peripheral neutrophil count was 0.5 x 10^9/L (reference range, 1.8-7.8 x 10^9/L). Chest radiograph showed right hilar opacity and right lower lobe haziness. Sputum culture was negative. He responded to a 1-week course of Tazocin (4.5 g intravenously every 8 hours; Wyeth, Carolina, US). Computed tomography of the thorax showed a contracted right lower lung with coarse interstitial thickening, traction bronchiectasis, and fibrotic changes.

In January 2007, the patient was admitted to the Department of Ophthalmology with sudden deterioration in visual acuity in his left eye. The diagnosis was left amaurosis fugax and he was treated with aspirin. In July 2007, he was admitted with right lower lobe pneumonia. The sputum culture yielded *Streptococcus pneumoniae* and *Haemophilus influenzae*. The symptoms resolved after a week of treatment with Augmentin (1.2 g intravenously every 8 hours; Beecham Pharmaceuticals, UK).

In April 2008, he was admitted with watery diarrhoea, chronic cough, and weight loss of 9 kg in the previous 4 months. His haemoglobin level was 90 g/L (reference range, 140-175 g/L) and his neutrophil count was 0.5 x 10^9/L. Chest radiograph showed right lower zone pneumonia. Sputum culture identified *H influenzae*. The symptoms resolved after a week of treatment with Augmentin (1.2 g intravenously every 8 hours; Beecham Pharmaceuticals, UK).

In March 2009, the patient presented with fever, chronic cough, reduced appetite, and watery diarrhoea for 3 months. His peripheral neutrophil count was 0.6 x 10^9/L. His haemoglobin level dropped from 120 to 90 g/L in 8 months. His serum iron was 1.5 µmol/L (reference range, 10.7-26.9 µmol/L) and total iron binding capacity was 22.8 µmol/L (44.8-71.6 µmol/L), while his serum vitamin B12 and folate levels were normal. Carcinoembryonic antigen, alpha-fetoprotein, and prostate specific antigen were unremarkable. Bone marrow
Ho et al.

494 Hong Kong Med J Vol 16 No 6 December 2010 www.hkmj.org

examination was performed because of bicytopenia. The results showed marrow hypopcellularity, normal granulopoiesis by trephine biopsy, and no evidence of malignancy. Human immunodeficiency virus (HIV) serology was negative. Repeated stool cultures and *Clostridium difficile* toxin were negative. The neutropenic fever responded to Tazocin (4.5 g every 8 hours; Wyeth).

In August 2009, he was admitted with persistent symptoms. His peripheral neutrophil count was 1.0 x 10^9/L. Chest radiograph showed right lower lobe bronchiectatic changes. Sputum culture identified *Pseudomonas aeruginosa*. Stool culture for *C difficile* toxin was negative. He was discharged after a course of piperacillin (4 g intravenously every 6 hours; Piperacillin North China Pharmaceuticals Co Ltd, Shandong, PRC) and oral Ciproxin (400 mg orally twice a day; AP Pharma Ltd, Hong Kong).

In view of the repeated right lower lobe pneumonia, he was admitted for bronchoscopy in September 2009, which showed mildly swollen left lower lobe orifices. Subsequently, a random right lower lobe biopsy was positive for cytomegalovirus (CMV)--staining nuclear and cytoplasmic inclusions. He also complained of acute visual deterioration in his right eye for 5 days before admission. The visual acuity in his right was 6/60, and an ophthalmologist's initial diagnosis was right branch retinal artery occlusion. The patient was then examined for suspected adult-onset immunodeficiency. Repeat HIV serology was negative, and peripheral blood CMV pp65 was undetectable. The lymphocyte subset profile showed low T cells, low CD4+ to CD8+ ratio, absent B cells, and low immunoglobulin (Ig) M and IgG levels (Table). With his background of AB thymoma, a diagnosis of Good syndrome with CMV

![Fig. Right retina (a) before administration of intravenous ganciclovir showing patches of retinitis at the parafoveal region and superonasal quadrant, and vitreous haziness; and (b) after 2 weeks of intravenous ganciclovir showing that the retinitis resolved and the vitreous became clearer](image)

TABLE. The patient’s lymphocyte subset profile by flow cytometry and immunoglobulin levels

<table>
<thead>
<tr>
<th>Lymphocyte subset profile</th>
<th>Dual-platform analysis</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>T cells CD3</td>
<td>452 cells/mL (86.5%)</td>
<td>672-2638 cells/mL (54.8-83.0%)</td>
</tr>
<tr>
<td>T helper cells CD4</td>
<td>85 cells/mL (16.2%)</td>
<td>292-1366 cells/mL (23.1-51.0%)</td>
</tr>
<tr>
<td>Ts/c* CD8</td>
<td>285 cells/mL (54.6%)</td>
<td>240-1028 cells/mL (17.9-47.5%)</td>
</tr>
<tr>
<td>CD4:CD8 ratio</td>
<td>0.3</td>
<td>0.6-2.5</td>
</tr>
<tr>
<td>B cells CD19</td>
<td>0 cells/mL (0%)</td>
<td>82-560 cells/mL (5.1-20.8%)</td>
</tr>
<tr>
<td>Natural killer cells CD16/56</td>
<td>73 cells/mL (13.9%)</td>
<td>130-938 cells/mL (7.1-38.0%)</td>
</tr>
<tr>
<td>Immunoglobulin G (g/L)</td>
<td>6.66</td>
<td>8-18</td>
</tr>
<tr>
<td>Immunoglobulin M (g/L)</td>
<td>0.17</td>
<td>0.5-2.2</td>
</tr>
<tr>
<td>Immunoglobulin A (g/L)</td>
<td>0.77</td>
<td>1.1-5.6</td>
</tr>
</tbody>
</table>

* Ts/c denotes T-suppressor/cytotoxic
pneumonia was made. A second colonoscopy was performed for the persistent diarrhoea. Despite a normal macroscopic appearance of the colon, random colonic biopsy revealed CMV inclusion bodies.

The retinographs of both eyes, reviewed by an ophthalmologist, showed features highly compatible with CMV infection, including patches of retinitis and vitreous haziness in the right eye and scarring in the left eye due to previous insults. As the patient’s left eye was blind, right eye biopsy was not contemplated. A diagnosis of Good syndrome with disseminated CMV infection was made. He was treated with intravenous ganciclovir 5 mg/kg 12 hourly for 2 weeks, followed by lifelong oral maintenance with valganciclovir 900 mg daily for CMV retinitis. He also started trimethoprim-sulfamethoxazole 900 mg 3 times per week for Pneumocystis jiroveci pneumonia prophylaxis. Monthly Ig infusion was scheduled to maintain his IgG within the reference range. His respiratory and gastrointestinal conditions improved afterwards. He had a good appetite and gained weight. His right visual acuity improved from 6/60 to 6/30 (Fig). Follow-up high-resolution CT of the thorax in October 2009 showed chronic lung changes.

Discussion

Good syndrome was first described in 1954 by Robert Good.² Good syndrome is characterised by low or absent circulating B lymphocytes, hypogammaglobulinaemia, CD4+ T-cell lymphopenia, and inverted CD4+ to CD8+ ratio. The condition is a rare adult-onset immunodeficiency disease associated with thymoma. Thymoma is found in 10% of patients with adult-onset hypogammaglobulinaemia³ and there are less than 60 reported cases of Good syndrome worldwide at present. The mean age at onset of patients with Good syndrome is 56 years, which manifests with infection, thymoma, or hypogammaglobulinaemia. The full syndrome is generally established within 6 years of the onset of initial symptoms.⁴

This patient first presented with anaemia and neutropenia. Reports have suggested that anaemia is present in half of patients with Good syndrome.⁴ Pure red cell aplasia is found in 35% of patients with Good syndrome, and aplastic anaemia, haemolytic anaemia, and pernicious anaemia have all been described.⁵⁻⁶ Approximately 55% of patients with Good syndrome have a low white cell count, and 18% have neutropenia.⁷ Thrombocytopenia is found in 20% of patients with Good syndrome.³ Both pure red cell aplasia and neutropenia may respond to glucocorticosteroids, suggesting the possibility of an underlying autoimmune pathogenesis. Glucocorticosteroid therapy was not attempted for this patient as his peripheral haemoglobin and neutrophil counts remained static during out-patient follow-up. The pathogenesis of immunodeficiency in patients with Good syndrome remains unknown, and reversal of the immunodeficiency after thymectomy has not been reported. However, thymectomy usually has favourable outcomes for associated conditions such as pure red cell aplasia and myasthenia gravis.

In this patient, the globulin levels were persistently normal despite having repeated infections and evidence of chronic inflammatory disease. Paradoxically, normal globulin levels could be a clue to hypogammaglobulinaemia in patients with Good syndrome with co-existing infections. The pathogenesis of hypogammaglobulinaemia is not well understood.

Infectious characteristics of patients with Good syndrome are recurrent sinopulmonary infection with encapsulated bacteria such as H influenza and S pneumoniae.¹⁰ Lung abscess and empyema are rare, but bronchiectasis could develop in some patients, probably as a consequence of the low IgG levels. However, this patient did not contract tuberculosis, which is endemic in Hong Kong.

Gastrointestinal complications are common in patients with Good syndrome. Most patients with diarrhoea have no definite identifiable pathogens although CMV, Giardia lamblia and non-typhoidal Salmonella spp can occasionally be found.¹¹

This patient also presented with acute visual deterioration, and the CMV retinitis and vitreous haziness in his right eye were completely resolved after intravenous ganciclovir. Other authors have reported that ocular manifestations of good syndrome may include toxoplasma retinitis and herpetic keratitis.¹¹

Cytomegalovirus infection is rarely described in patients with normal immunity, but secondary reactivation of latent CMV infection is a common and characteristic manifestation of cell-mediated immunity defects. Patients with Good syndrome have reduced T-cell numbers and often have generalised defects in in-vitro T-cell proliferation in response to mitogens and antigens. There has been a report of CMV-specific defects in CMV-induced proliferation and interferon-g production in patients with Good syndrome.¹² Additionally, the lymphopenia in patients with Good syndrome is much less profound than in patients with HIV infection.¹³ This suggests significant functional CD4+ T-cell defects in Good syndrome, and is supported by abnormal in-vitro lymphocyte studies in some patients.¹⁴ In contrast, prolonged CD4+ T lymphopenia may be caused by acute CMV infection.

Although this patient had disseminated CMV infection, his peripheral CMV pp65 antigen was
negative. This can be explained by the limited number of available white blood cells, making it impossible to detect in leukopenic patients.

The mortality rate of patients with Good syndrome is higher than those with X-linked gammaglobulinaemia or common variable immunodeficiency. The 5- and 10-year survival rates of good syndrome are 70% and 33%, respectively.\(^\text{13}\)

In summary, these authors recommend checking Ig levels and lymphocyte subsets in patients with thymoma and considering the possibility of Good syndrome as soon as signs of infection are apparent. The investigations are simple, but a high index of suspicion is of paramount importance. In addition, the immunological parameters may be normal initially, and it may be necessary to repeat the immunological investigations if Good syndrome is suspected.

As patients with immunodeficiency cannot mount appropriate immunological responses to infection, aggressive antimicrobial treatment for patients with Good syndrome presenting with evidence of infection is recommended. Patients with Good syndrome should have regular IgG infusions to maintain IgG at the lower end of the reference range and be given cotrimoxazole prophylaxis for \(P \) jiroveci pneumonia. Finally, while thymectomy does not restore immune function, it does help to prevent local invasion and metastatic spread.

References