Prevalence of drugged drivers among non-fatal driver

Objective
To investigate the prevalence and characteristics of abusive
drug exposure among non-fatal motor vehicle driver casualties
presenting to a designated trauma centre in Hong Kong.

Design
Cross-sectional study.

Setting
Designated trauma centre/regional accident and emergency
department in Hong Kong.

Subjects
Non-fatal motor vehicle driver casualties who presented to the
trauma centre from 1 January 2007 to 31 December 2007.

Main outcome measures
Screening of abusive drug exposure using commercial bedside
urine immunoassay kits.

Results
Drug screening was performed in 395 injured drivers, 10% of
whom tested positive for the drugs of interest. Ketamine was
the most commonly detected abusive substance (found in 45%
of the subjects). A significantly higher proportion of young
drivers (aged <25 years) screened positive (odds ratio=2.3; 95%
confidence interval, 1.0-5.2; \(P=0.04\)), with the rate being 21%.
The presence of these drugs in urine was related to the time of
occurrence of the crash; those occurring between midnight and
dawn revealed a trend towards a higher proportion of casualties
testing drug-positive (odds ratio=2.2; 95% confidence interval,
0.9-5.3; \(P=0.07\)). There were no significant differences in the
frequency of persons testing positive for the screened drugs
with respect to gender, class of motor vehicle driven, or the day
of the week on which the crash occurred.

Conclusions
The prevalence of drugged driving among non-fatal casualties
in our series of Hong Kong drivers was 10%. The frequency of
such drivers testing positive for drugs was significantly higher in
persons aged less than 25 years. These findings indicate a need
to amend existing laws and implement on-site drug screening
for suspected drugged drivers.

Introduction
Traffic injuries represent a major public health issue and alcohol is a well-recognised risk
factor for motor vehicle crashes (MVC).\(^1\) Driving under the influence of drugs (DUID) other
than alcohol is now considered to be an increasing cause of traffic accidents worldwide.\(^2\)
Exposure to illicit drugs impairs driving ability owing to their effects on the central nervous
system, psychomotor performance, and risk-taking behaviour. Studies have shown the
association between the use of psychoactive substances other than alcohol and increased
accident risk.\(^3\)\(^5\)

A roadside survey in Thailand showed a prevalence of psychoactive drug use among
general drivers not involved in MVC to be 9.7%.\(^6\) Alcohol or psychoactive drugs were found
in 4.5% of drivers in a random sampling survey in Norway.\(^7\) A high proportion of injured
drivers have been reported to test positive in overseas studies involving psychoactive
drug screening. Siliquini et al\(^8\) revealed positive psychoactive substances present in 18.5%
of the drivers involved in road traffic crashes in Italy. In a Swedish study, 13% of non-
fataly injured drivers tested positive for pharmaceuticals which could impair driving.\(^9\) A
study conducted in Belgium involving 211 injured drivers showed that 12.3% screened
positive for drugs, and about half of them tested positive for alcohol as well.\(^10\) Among
injured drivers, there was a much higher prevalence of persons screened drug-positive reported from the United States, ranging from 22.6 to 50.9%. In a local epidemiological study, 56% of the deceased drivers from single-vehicle crashes had alcohol and/or drugs in their bodies; 7% were positive for drugs only and 5% were for both drugs and alcohol. However, there are no local data on the prevalence of abusive drug use in drivers of non-fatal motor vehicle casualties.

This study therefore aimed to evaluate the prevalence and characteristics of abusive drug exposure among the non-fatal motor vehicle driver casualties presenting to a designated trauma centre in Hong Kong.

Methods

This study was conducted in a regional accident and emergency department, which was also one of the five designated trauma centres in Hong Kong.

The study period extended from 1 January 2007 to 31 December 2007. All motor vehicle driver casualties who presented to the trauma centre for treatment of injuries after a crash were approached for assessment. Fatal cases (certified dead in the emergency room) were excluded from the sample. All other injured drivers were considered eligible for recruitment, whatever their outcome after admission. The urine tests were performed if verbal consent was obtained from the patient or if deemed strongly indicated by the in-charge doctor (to assist management when consciousness was impaired). All eligible injured drivers who were screened had urine testing for abusive drug exposure, if there were clinical indications for drug screening or if verbal consent could be obtained. Consenting drivers were reassured that all information obtained would be kept confidential and used for scientific and not legal purposes.

We used two sets of bedside urine immunoassay kits (ACON Laboratories; San Diego, US) for screening. One was a multiple panel kit for 10 different drugs (amphetamine, methamphetamine, cocaine, 3,4-methylenedioxyamphetamine (MDMA), tetrahydrocannabinol (THC), morphine, methadone, benzodiazepines, tricyclic antidepressants (TCAs), and barbiturates), and one was a single panel kit for ketamine. As TCAs and barbiturates are sometimes prescribed as therapeutic medications, these agents were not considered to be abusive drugs and were not included in the study. Epidemiological characteristics of the drivers were also collected.

The point prevalence of positive urine drug screening in these motor vehicle driver casualties was determined. Descriptive statistics were employed to illustrate the frequency of the positive results for different abused drugs. Binary logistic regression analysis was used to find any association between positive urine screening and characteristics of the drivers (gender, age ≤25 or ≥25 years, class of motor vehicle), time of the MVC event (midnight-dawn [0:00-07:59], daytime [08:00-15:59], or evening [16:00-23:59]), and whether on a weekday (Monday to Friday) or a weekend (Saturday and Sunday).

The significance level was set at 5%. The goodness-of-fit of the regression model was examined by the log likelihood statistic. STATA (StataCorp, College Station, US) was employed for the statistical analysis. The study was approved by the cluster ethics committee of the Hospital Authority of Hong Kong and the Human Research Ethics Committee for Non-clinical Faculties of the University of Hong Kong.

Results

A total of 783 casualty drivers presented to our trauma centre during the study period, of whom 395 (50%) had urine drug screening. Among the latter, 150 drove private cars, 80 drove motorcycles, and 165 drove other vehicles. The mean and median ages of the sampled drivers were 37 and 28 (range, 18-63) years, respectively. The main reasons for not participating in the screening were withholding consent and failure to initiate the consent process prior to discharge.

Of 395 drivers, 38 (10%) of the screened drivers tested positive for at least one illicit drug. Ketamine was the most frequent drug detected in urine samples with a point prevalence of 45%, followed by benzodiazepines (21%), cannabinoids (21%), and methadone (12%). The prevalence of positive urine drug screening for each drug is as follows: methamphetamine (39%), amphetamine (26%), cannabinoids (21%), methadone (21%), benzodiazepines (19%), and ketamine (45%). The prevalence of positive drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.

The point prevalence of positive urine drug screening for each drug was determined using binary logistic regression analysis. The significance level was set at 5%.
was the most frequently detected abusive substance (n=17; 45%) in the sample (Fig); 26 (68%) tested positive for a single drug and 12 (32%) for more than one drug. Among the latter 12 drivers, seven tested positive for three or more drugs. The multiple drug combinations in the urine of these 12 drivers are shown in Table 1.

Table 2 shows demographic and other features of relevance to the sample of screened drivers. There were 63 (16%) drivers who were younger than 25 years, and 360 (91%) were male. Approximately 71% (281/395) of these casualties occurred on weekdays (Monday to Friday); 20% of the sampled drivers presented to the emergency department during the period 00:00-07:59 hours.

Table 2 also shows the results of binary logistic regression, which indicates a significantly higher frequency of urine testing positive for drugs among drivers aged below 25 years (odds ratio=2.3; 95% confidence interval, 1.0-5.2; P=0.04). Motor vehicle crashes occurring in the period midnight to dawn (00:00-07:59) were associated with a higher frequency of positive drug screening (odds ratio=2.2; 95% confidence interval, 0.9-5.3; P=0.07). There was no significant association with respect to vehicle types, genders, day of the accident (weekdays vs weekend) and urine testing positive. The model generally demonstrated a good fit with the observations.

Discussion

Drug abuse is an important social problem in Hong Kong. Apart from heroin, psychoactive substances such as ketamine, methamphetamine, and cannabis are commonly abused. Driving under the influence of drugs has recently gained considerable attention as a potential threat to local road traffic safety. In reply to Legislative Council questions on 24 February 2010, the Secretary for Transport and Housing stated that there were four traffic accidents involving drivers suspected of DUID in the past 12 months. This may be an underestimate however, due to the limited investigation powers of the police that relate to current legislation about such driving.

Abusive drugs are mostly psychoactive substances. Theoretically, they have detrimental effects on psychomotor performance and may impair driving skills. The association between psychoactive substance use and driving impairment had been investigated in various types of studies, involving laboratories, simulators, as well as on-road and field investigations.

Ecstasy, also known as MDMA, and methamphetamine (ice) are commonly abused drugs in Hong Kong. Exposure to these stimulants could cause divided attention deficits in performing tasks and decreased appreciation of risks during driving. However, laboratory studies have yielded inconsistent results with respect to impaired driving performance. Low blood concentrations of amphetamine, methamphetamine, and ecstasy have been found in persons arrested for DUID. The increased risk of MVC may actually be related to fatigue and sleep deprivation. In contrast to such stimulants, the relationship between the risk of MVC and benzodiazepine use has been well proven. Apart from alcohol, cannabis is the most frequently detected abused substance in drivers involved in MVC reported in the literature. Compared with ketamine, cannabis abuse in Hong Kong is less common and there is actually a decreasing trend. Experimental studies show that THC, the major psychoactive compound in cannabis, acutely impairs cognition, psychomotor function, and driving performance in a dose-related manner. According to epidemiological analyses, combined use of alcohol and cannabis significantly increases the risk of a MVC.
commonly abused substances.16 However, the association of opioid intoxication and consequential sedative effects with the risk of MVC has not been well studied.16 In Hong Kong, there has been a sharply rising trend in ketamine abuse in recent years,16 but no local study has explored its impact on road traffic safety. Ketamine use is associated with poor body coordination and balance,22 which could impair driving performance.

When purchasing standard comprehensive private vehicle insurance policy in Hong Kong, being ‘a young driver’ results in an excess charge. A young driver is usually defined as aged less than 25 years. According to the data for the year 2003 to 2007 from the local Transport Department, 8 to 10% of motor vehicle drivers involved in crashes were under 25 years.23 Notably, motor vehicle driver casualties in persons aged under 25 years accounted for 34% (13/38) of our sample who tested drug positive, which is substantially higher than that anticipated from the proportion of young subjects in our cohort of drivers who crashed. This observation is consistent with our finding that being a driver aged under 25 years was an independent factor associated with positive drug screening (odds ratio=2.3). Positive drug screening should not be interpreted as equivalent to drug intoxication. On the other hand, a drug abuse habit may be associated with other forms of high-risk driving behaviour, including drink driving, an increased risk of crashing, and having an adverse crash outcome. Therefore, the exact association between abused drug intoxications and crash outcomes cannot be established directly from the present study that used drug screening as the main measure of outcome.

According to the voluntary reporting system of the Central Registry of Drug Abuse, heroin and ketamine are the most commonly reported abused drugs. Ketamine is the most popular psychoactive substance abused by the persons aged less than 21 years.16 Our study revealed that ketamine was the most frequently detected drug among drivers who screened positive. Among those testing positive for more than one drug, ketamine was also the commonest drug used in the combination (Table 1). In general, drugs detected in impaired drivers could reflect the general pattern of drug use in the community,18 and our results indicate a high frequency of ketamine use in Hong Kong.

This study showed that driver casualties presenting to our trauma centre during the dawn to morning period were more likely to have urine specimens that screened positive than those presenting during the daytime. This result may be explained by the wider range of entertainment activities (dancing and clubbing) taking place at night. However, there was no significant difference in the association with respect to testing drug-positive

<table>
<thead>
<tr>
<th>TABLE 2. Characteristics of sampled drivers and results of binary logistic regression for the prevalence of drugged drivers*</th>
<th>No. (%) of drivers (n=395)</th>
<th>No. (%) of test positive</th>
<th>Odds ratio (95% confidence interval)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00-07:59</td>
<td>79 (20)</td>
<td>14 (18)</td>
<td>2.2 (0.9-5.3)</td>
<td>0.07‡</td>
</tr>
<tr>
<td>08:00-15:59</td>
<td>156 (39)</td>
<td>12 (8)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16:00-23:59</td>
<td>160 (41)</td>
<td>12 (8)</td>
<td>0.9 (0.4-2.2)</td>
<td>0.89</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><25</td>
<td>63 (16)</td>
<td>13 (21)</td>
<td>2.3 (1.0-5.2)</td>
<td>0.04†</td>
</tr>
<tr>
<td>(\geq 25)</td>
<td>332 (84)</td>
<td>25 (8)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorcycle</td>
<td>80 (20)</td>
<td>7 (9)</td>
<td>1.2 (0.4-4.2)</td>
<td>0.74</td>
</tr>
<tr>
<td>Private car</td>
<td>150 (38)</td>
<td>21 (14)</td>
<td>1.9 (0.6-5.5)</td>
<td>0.26</td>
</tr>
<tr>
<td>Taxi</td>
<td>82 (21)</td>
<td>5 (6)</td>
<td>1.0 (0.3-3.7)</td>
<td>0.98</td>
</tr>
<tr>
<td>Others</td>
<td>83 (21)</td>
<td>5 (6)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>360 (91)</td>
<td>34 (9)</td>
<td>0.8 (0.3-2.5)</td>
<td>0.69</td>
</tr>
<tr>
<td>Female</td>
<td>35 (9)</td>
<td>4 (11)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekend</td>
<td>114 (29)</td>
<td>10 (9)</td>
<td>0.9 (0.4-1.9)</td>
<td>0.73</td>
</tr>
<tr>
<td>Weekday</td>
<td>281 (71)</td>
<td>28 (10)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

* Log likelihood ratio statistics=13.62
† Statistically significant at the 5% level
‡ Statistically significant at the 10% level
An earlier Hong Kong study showed that among all classes of vehicle drivers involved in local road traffic accidents in 2007, motorcyclists had the highest driver fatality rate (4.4 per 1000 drivers). Our study did not demonstrate a significantly higher proportion of urine screened drug-positive among motorcyclists, but our results could be limited by the small number of motorcyclists in our sample.

In most of western countries, DUID is covered by specific legislation; different countries having passed different types of related statutes. These statutes require that either the drugs achieve a level that renders the driver incapable of driving safely, or adopt a zero tolerance whereby drugged drivers are prosecuted if defined drugs or metabolites are detected in their bodies. In Hong Kong, the definition of drug driving is not clear. What the legislation states is that “a person who drives or attempts to drive or is in charge of a motor vehicle on any road while he is under the influence of drink or drugs to such an extent as to be incapable of having proper control of the motor vehicle commits an offence”. In contrast to drink driving, police officers are not empowered to conduct random checks or obtain blood or urine samples from DUID suspects for the purpose of prosecution under the existing law. Amendment of the existing legislations to implement on-site compulsory testing of suspected drugged drivers may be an important combating strategy. Compulsory testing should be considered in drivers involved in any MVC and particularly persons who pass the breath alcohol test but fail field sobriety testing. For the implementation of random checks, the issue may be more complicated and a careful balance between the public acceptance and the benefits of deterring DUID should be considered. Concerning the feasibility of obtaining body fluid samples at the scene, saliva could be the preferred matrix for roadside drug screening. At present, however, there is no commercially available roadside saliva testing device for ketamine that has satisfactory sensitivity and specificity.

Limitations

Accuracy of immunoassay tests

The cross-reactivity of tested substances with other structurally similar compounds often cause false positives when based on immunoassays. In legal settings requiring proof that a particular drug is present beyond doubt, confirmation by gas chromatography/mass spectrometry is preferable. However due to the limitation of resources and the design of our study, all urine testing positive by us were considered true positives. Notwithstanding this limitation, results from overseas studies involving toxicology screening in trauma patients revealed a high correlation between drug screening results and subsequent laboratory confirmation.

Supportive evidence of driving under the influence of drugs by the positive drug screening results

It is often difficult to establish the causal relationship between a positive screening result and the MVC. Positive screening merely indicates recent exposure to the abused drug(s). Some drug screening tests detect inactive metabolites of the abused drugs, for example, those of cocaine, which persist in the body for much longer time than the active compound(s). Thus, urine tests provide no proof that the driver was under the influence of a drug (ie was intoxicated) and that this caused the event.

Selection bias and response rate of the sample

Santamariña-Rubio et al reported that gender, attendance time, and waiting time could be independent factors for non-participation in drug screening tests. We did not assess our sample for any such selection biases. Due to voluntary participation, the response rate for urine screening was expected to be low. Persons who had been exposed to abused drugs were considered more likely to refuse the tests. Our participation rate was slightly above 50%. Thus, 10% may represent a minimal estimate of the local prevalence of abused drug exposure in motor vehicle driver casualties.

Conclusions

Driving under the influence of drugs is a recognised potential threat to road safety in Hong Kong. Our result indicating a 10% prevalence for abused drug exposure in local non-fatal motor vehicle drivers probably represents a fair-to-conservative estimate. The estimated prevalence among drivers aged less than 25 years (21%) was significantly higher. These results indicate an urgent need to explore objective means of identifying DUID and update existing laws for the prosecution of this offence.

Declaration

This study did not involve any direct financial interest with any commercial organisation. The findings of the study have also been submitted (by the first author) to the Hong Kong Poison Information Centre for partial fulfilment of the requirement for a Diploma of Clinical Toxicology. The bedside urine immunoassay kits (ACON) used in this project were donated by the Transport Department of the HKSAR Government and the donor has in no way influenced the authors in the conduct of this study and reporting of its results and conclusion.
References

5. Skolnick A. Illicit drugs take still another toll—death or injury from vehicle-associated trauma. JAMA 1990;263:3122,3125.

