Late-onset postpartum eclampsia: still a diagnostic dilemma?

VM Santos, FG Corrêa, FRD Modesto, PR Moutella

Eclampsia is still a major cause of perinatal morbidity and mortality in developing countries but postpartum eclampsia has rarely been described. We present a case in which a 22-year-old Brazilian woman without a typical history of pre-eclampsia presented with eclampsia after the fourth postpartum day. The clinical diagnosis was corroborated by angiography and magnetic resonance imaging of the brain. The findings of nine similar cases reported in the literature are reviewed to compare data and highlight possible diagnostic pitfalls when managing this condition.

Introduction

Although prenatal care has significantly reduced the rate of eclampsia in western countries, it remains a major cause of maternal and foetal death.1 Pre-eclampsia is the new onset of arterial hypertension (≥140/90 mm Hg) and proteinuria after 20 weeks of pregnancy, and eclampsia is the occurrence of convulsions in women with clinical evidence of pre-eclampsia.

In late postpartum eclampsia (LPE) the onset of convulsions occurs more than 48 hours, but less than 4 weeks, after delivery.2,3 Late postpartum eclampsia may occur without any pre-eclamptic prodromes, including proteinuria4-8; however, adequate evaluation and reporting of pre-eclamptic symptoms, such as headaches and visual changes, can lower the number of pregnancy-related deaths.3 The delayed onset and the atypical presentation may lead to misdiagnosis in LPE. Lack of caretaker attention can constitute another serious, but potentially reversible obstacle to the characterisation of the impending eclampsia.

Very often, the differential diagnosis of seizure-related puerperal conditions must involve early medical, neurological, and central nervous system (CNS) imaging evaluation.

Case report

On 24 September 2005, a 22-year-old healthy Brazilian woman (gravida 2, para 2) had a vaginal delivery, at 37 weeks of pregnancy, of an infant that died of respiratory complications. Her obstetric history, including her previous pregnancy 2 years before, was unremarkable and neither proteinuria nor arterial hypertension was detected. Her family history was also unremarkable. Her postpartum course was uneventful and she had no oedema, proteinuria, or hypertension until the fourth day when she developed severe occipital and frontal headaches and blurred vision. On the next day, she was managed in another hospital for a generalised tonic-clonic seizure and had two similar seizures, treated with 10 mg of diazepam intravenously before being transferred to our emergency department. On admission, the patient’s body mass index was normal, Glasgow Coma Scale score was 15, blood pressure 160/90 mm Hg, pulse 66 beats/min, respiratory rate 20 breaths/min, and temperature 37°C (98.6°F). Her neck was supple and non-tender, and her pupils were equal and reactive to light. Cardiovascular, respiratory, and abdominal examinations revealed no abnormalities. The ophthalmologic examination and laboratory results, including a urinalysis, complete blood count, serum electrolytes, liver function tests, coagulation profile and cerebrospinal fluid (CSF) examination, were normal. The fluid-attenuated inversion recovery images of the magnetic resonance imaging showed small foci of high signal intensity in the cortical and sub-cortical white matter bilaterally, mainly in the parieto-occipital and frontal regions (Fig a), with a normal venous system. Digital angiography (Fig b) only revealed small and diffuse cerebral vascular lesions giving a ‘rosary bead’ appearance, predominantly in the distal vessels. The patient was admitted to the internal medicine service and remained stable, with a high blood pressure (170/110 mm Hg), which was successfully controlled with a short course of hydrochlorothiazide and captopril, but did not require long-term antihypertensive drugs. She had no further seizure activity and was discharged home without further neurological sequelae.

Key words
Cerebrovascular disorders; Eclampsia; Magnetic resonance imaging; Postpartum period; Pregnancy

Hong Kong Med J 2008;14:60-3

Department of Internal Medicine, Armed Forces Hospital, Brasilia-DF
VM Santos, MD, PhD
FG Corrêa, MD
PR Moutella, MD
Brazilian Federation of Gynecology and Obstetrics
FRD Modesto, MD

Correspondence to: Dr VM Santos
E-mail: vitorinomodesto@gmail.com
Discussion

We performed a retrospective analysis of the clinical, laboratory, and imaging findings from nine similar reports published in the last 6 years, and included the present case in our analysis. The patients’ mean age was 27.2 (standard deviation [SD], 5.5; median, 28; range, 18-38) years. Four (40%) of the patients were nulliparous. Three women had a history of abortions and, in a sole case, pre-eclampsia had occurred during a previous pregnancy. Gestational age was reported in six of the cases, giving a mean age of 38.6 (SD, 1.3) weeks with a median of 38.5 (range, 37-41) weeks. Four (40%) patients were delivered by caesarean section. One of the 10 live born infants died of respiratory failure. There was no maternal mortality. The mean postpartum day of eclampsia onset was 7.6 (SD, 2.2) and median 8.5 (range, 4-11). None of the patients presented with typical pre-eclamptic prodromes. Headache was the commonest symptom (90%) of impending eclampsia, and one patient had backache associated with Guillain-Barré syndrome. Minor or major visual changes (scotomata, blurred vision, or blindness) were present in 60% of the cases. Samples of CSF were obtained in seven of the cases, and in four (57%) of them the cell count and protein levels were elevated. Magnetic resonance imaging disclosed cerebral changes in 6/10 (60%) of the patients, while computed tomography and arteriography showed abnormalities in 2/6 (33%) of the cases. Occipital and parietal CNS changes were found in 7/7 and 6/7 (100% and 86%, respectively) of the cases; and frontal 3/7 (43%), cerebellar 2/7 (29%), and temporal 1/7 (14%) changes were less frequent findings (Table).

In our patient, the LPE occurred in the fourth day, and was not heralded by a typical pre-eclamptic prodrome. The laboratory tests, including CSF data, were unremarkable. On the imaging study, the CNS changes were more prominent in the parieto-occipital regions and the subcortical white matter, while the angiography study revealed a classical rosary bead-like appearance, which is indicative of diffuse cerebral vasospasm. Reversible posterior leukoencephalopathy syndrome has been associated with LPE; however, this condition could not be characterised on diffusion-weighted imaging and a diffusion coefficient map in this patient.

Initially, we focused on conditions that may cause headache, visual changes, and late postpartum seizures that could mimic LPE. Differential diagnoses of postpartum headache and visual changes followed by convulsions include: drug withdrawal, encephalitis and meningitis, epilepsy, metabolic disturbances, space-occupying lesions, vasculitis, venous thrombosis and stroke, and side-effects of epidural analgesia. Epidural analgesia may contribute to the diagnostic dilemma, if followed by early or late postpartum seizures, headache, and visual changes.
It may be difficult to establish the origin of postpartum seizures in cases with or without evidence of antepartum or postpartum pre-eclampsia. It is noteworthy that among 151 patients presenting with delayed postpartum pre-eclampsia, 24 (16%) developed eclampsia.16

Cerebrovascular disorders (aneurysms, arteriovenous malformations, infarctions, and haemorrhages) occurring during the postpartum period may constitute pitfalls in the diagnosis of LPE16; however, we did not see evidence of any of these conditions on the computed tomography with and without contrast, nor with the magnetic resonance imaging and angiography studies, and the investigations for a thrombophilic state were unremarkable.

Our patient had not been given any type of analgesia, and the medical, neurological, laboratory, imaging, and follow-up evaluations failed to find any other aetiology for her seizures, making LPE the most likely diagnosis. Nevertheless, another possible concern could be spontaneous postpartum cerebral angiopathy, because there is an overlap between this condition and LPE.18

This report aims to highlight underreporting of LPE due to misdiagnosis. It is worth noting that a review of 23 cases of LPE found that six patients sought care for symptoms of typical pre-eclampsia, but the diagnosis was missed by those physicians managing them.9 Nonetheless, LPE is difficult to prevent in the absence of a typical prodrome. Despite being considered a rare event, its incidence is increasing.14,15 Although delivery is usually the ultimate measure in the management of patients with pre-eclampsia, it does not eliminate the possibility of this serious complication.16

The occurrence of LPE without typical pre-eclampsia emphasises the need to be aware of the possibility of this diagnosis, even in a pregnant patient with no hypertension or proteinuria,20 when headaches and/or visual changes develop during the postpartum period.

References

Table: Comparative data from 10 patients with late postpartum eclampsia (LPE)

<table>
<thead>
<tr>
<th>Pain</th>
<th>Visual changes</th>
<th>CSF changes (with abnormalities)</th>
<th>CNS changes</th>
<th>MRI</th>
<th>Angiography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>Yes</td>
<td>1 cells 1 protein</td>
<td>Frontal, temporal, parietal, occipital</td>
<td>Change</td>
<td>Change</td>
</tr>
<tr>
<td>Head</td>
<td>Yes</td>
<td>1 cells 1 protein</td>
<td>Frontal, parietal, occipital, cerebellar</td>
<td>Change</td>
<td>Normal</td>
</tr>
<tr>
<td>Head</td>
<td>No</td>
<td>1 cells 1 protein</td>
<td>Parietal, occipital, cerebellar</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>None</td>
<td>Yes</td>
<td>No data</td>
<td>Occipital</td>
<td>Change</td>
<td>Normal</td>
</tr>
<tr>
<td>Back</td>
<td>No</td>
<td>1 cells 1 protein</td>
<td>Parietal, occipital (Guillain-Barré syndrome)</td>
<td>Change</td>
<td>Normal</td>
</tr>
<tr>
<td>Head</td>
<td>No</td>
<td>Normal</td>
<td>No data</td>
<td>Normal</td>
<td>No data</td>
</tr>
<tr>
<td>Head</td>
<td>No</td>
<td>Normal</td>
<td>No data</td>
<td>Normal</td>
<td>No data</td>
</tr>
<tr>
<td>Head</td>
<td>Yes</td>
<td>No data</td>
<td>Parietal, occipital</td>
<td>Change</td>
<td>No data</td>
</tr>
<tr>
<td>Head</td>
<td>Yes</td>
<td>Normal</td>
<td>Frontal, parietal</td>
<td>Change</td>
<td>Change</td>
</tr>
</tbody>
</table>

CNS denotes central nervous system, CSF cerebrospinal fluid, and MRI magnetic resonance imaging.

† Surgical: caesarean