Aconite poisoning in camouflage

Key words: Aconitum; Drugs, Chinese herbal; Poisoning

The Toxicology Reference Laboratory has confirmed 10 cases of aconite poisoning from March 2004 to May 2006. In four of these 10 cases, the aconite herb was not listed in the written prescription. We report these four cases to highlight the problem of ‘hidden’ aconite poisoning.

Case series

Case 1
After taking a decoction of Chinese herbal medicine for treatment of low back
pain, a 20-year-old man presented to an emergency department with sudden onset of weakness, sweating, vomiting, and shortness of breath. On admission, his consciousness was impaired and circulatory failure was evident. His systolic blood pressure was 70 mm Hg. Electrocardiography revealed ventricular tachycardia. Cardioversion was attempted unsuccessfully. Amiodarone was given immediately and the patient was intubated and managed in the intensive care unit. The cardiac arrhythmia was refractory to standard therapy. During bouts of ventricular tachycardia his pulse became imperceptible on occasion. Following prolonged cardiopulmonary resuscitation, aggressive supportive management and temporary pacing, the patient was stabilised. Subsequent electrocardiography and electrophysiological studies were normal. The patient fully recovered and was discharged after 3 weeks of hospitalisation.

This patient had taken a similar decoction 2 months before the event without problem. A Chinese medicine pharmacist studied the prescription and found that it did not include any cardio-toxic herb. These 17 components had been prescribed: Radix Cyathulae (川牛膝), Cortex Eucommiae (杜仲), Fructus Lycii (枸杞子), Rhizoma Anemarthenae (知母), Radix Dipsaci (川斷), Semen Sinapis (白芥子), Rhizoma Atractylodis (苍术), Rhizoma Atractyloidis Macrocephalae (白朮), Radix Saposhnikoviae (防風), Herba Epimedi (淫羊藿), Herba Hedyotidis Diffusae (百花蛇), Fructus Auranti (枳椇), Radix Paoniae Alba (白芍), Radix Clematidis (威靈仙), Rhizoma Smilacis Glabrae (茯苓), Rhizoma Cibotii (狗脊), and Fructus Amomi (春砂仁). Leftover herbal broth and a urine sample collected on the day of admission were screened for common toxins. Surprisingly, yunaconitine was found in both samples. Yunaconitine, an aconitum alkaloid found in Radix Aconiti from Yunnan, is as highly toxic as aconitine. Its presence confirmed aconite poisoning.

To identify the source of the aconite contamination, another pack of unused herbs kept by the patient was examined. The herbs matched those prescribed. The unused herbs were decocted for analysis. No aconitum alkaloid was detected. Hence, it is logical to conclude that the herbs taken by the patient on the day of admission contained Radix Aconiti. The source of the herbs, however, remains a mystery.

Case 2
A 27-year-old woman developed chest discomfort, dizziness, numbness, and weakness 1 hour after ingesting a decoction of Chinese herbal medicine. She arrived at an emergency department 30 minutes after the onset of symptoms. Upon presentation, she appeared unwell. Her blood pressure was 95/73 mm Hg and the pulse rate was 55 beats per minute. Electrocardiography showed a sinus bradycardia with first-degree heart block. She was hospitalised and the symptoms resolved completely in 24 hours with supportive therapy alone. This patient had enjoyed good past health and gave no history of cardiac disease. Shortly before the episode, she had a cough and consulted a herbalist. She was prescribed a formula containing 19 herbs. A review of the prescription showed Rhizoma Anemarthenae (知母), Rhizoma Polygognati (黃精), Cortex Moutan (牡丹皮), Rhizoma Dioscorea Batatis (山藥), Radix Rehmanni (熟地), Radix Rehmanni (生地), Rhizoma Smilacis Glabre (茯苓), Rhizoma Alismatis (澤瀉), Periostracum Cicadae (蟻鰲), Radix Isatidis (板藍根), Rhizoma Paridis (支花根), Rhizoma Belamcandae (射干), Radix Panscis Quinquelfoli (花旗參), Radix Glycyrrhiza (甘草), Radix Platycodi (桔梗), Radix Saposhnikoviae (防風), Rhizoma Atractyloidis Macrocephalae (白朮), Fructus Corni (山萸肉), and Semen Oroxyli (千層紙). Herbal poisoning was suspected but none of the herbs was known to give rise to such a clinical picture. The herbal remnants were dried for examination. Among the remnants, one item did not match any of the prescribed herbs but appeared to be a piece of aconitum rootstock. In addition, yunaconitine was detected in both the leftover herbal broth and the patient’s urine. The findings confirmed that this was another case of ‘hidden’ aconite poisoning with atypical clinical features.

Case 3
A 51-year-old woman, with a history of optic neuritis, was admitted with sudden onset of neck rigidity, dizziness, numbness of the extremities, and weakness. Two hours before presentation, she had ingested a bowl of herbal decoction with the following herbs: Radix Saposhnikoviae (防風), Radix Rehmanni (生地), Herba Schizonepetae (虅芥), Rhizoma Pinelliae (法夏), Periostracum Cicadae (蟻鰲), Rhizoma Smilacis Glaebrue (茯苓), Radix Scutellariae (黄芩), Radix Gentianae Macrophyllae (秦艽), Radix Bupleuri (柴胡), Radix Dipsaci (川斷), Radix Angelicae Pubescentis (當歸), Citrus Ruticulatae Pericarpium (陳皮), Ramulus Uncariae cum Uncis (梧蚣), Herba Taraxaci (蒲公英), and Flos Lonicerae (忍冬). The patient had taken the same herbs, which were prescribed for treatment of influenza, without problem earlier. On examination the patient had a blood pressure of 105/63 mm Hg and a pulse rate of 63 beats per minute. Electrocardiography showed sinus rhythm. The hypotension responded to fluid therapy. Routine laboratory investigations were unremarkable. Her symptoms subsided spontaneously the next day, but remained unexplained. Leftover herbal decoction and a urine specimen were analysed and yunaconitine was found in both specimens. This confirmed another case of ‘hidden’ aconite poisoning.

Case 4
A 45-year-old woman became ill 1 hour after taking herbal broth prescribed for a menstrual problem. She presented to an accident and emergency department with tongue numbness, nausea, dizziness, and generalised weakness. Her blood pressure was 91/44 mm Hg and pulse rate was 58 beats per min. Electrocardiography showed a junctional bradycardia. She was hospitalised and her symptoms...
improved after supportive treatment. The herbal formula taken contained the following herbs: Radix Codonopsis (參), Radix Astragali (黃芪), Radix Paeoniae Alba (白芍), Rhizoma Smilacis Glabrae (茯苓), Radix Angelicae Sinensis (當歸尾), Radix Dipsaci (川斷), Rhizoma Chuanxiong (川芎), Radix Rehmanniae Preparata (熟地), Talcum (滑石), Semen Cuscutae (菟絲子), and Radix Angelicae Dahuricae (白芷).

‘Hidden’ aconite poisoning was suspected. Leftover herbal broth and a urine sample collected on the day of admission were analysed. Yunaconitine was found in both samples, confirming the diagnosis.

Discussions

Aconite poisoning can be life-threatening.16 We have confirmed 10 cases of aconite poisoning in 2 years. In four of them, an aconite herb was not prescribed. ‘Hidden’ aconite poisoning, hence, is not uncommon. Moreover, this may be just the tip of an iceberg with some cases going unrecognised.

Diagnosing ‘hidden’ aconite poisoning is a clinical challenge. The presentation can be non-specific. Although aconite poisoning has been repeatedly reported in the Chinese medical literature, it is still a condition with which orthodox medical practitioners are unacquainted.17 Furthermore, many toxins have a similar presentation.18-20 A high index of suspicion is essential. These four cases also underscore the importance of timely and appropriate collection of samples for laboratory confirmation.

When a patient presents with unexplained numbness, weakness, and cardiovascular symptoms, the possibility of aconite intoxication should be considered. The differential diagnoses include plant and animal toxins such as digoxin-like cardiac glycosides, andromedotoxin, tetrahydropalmatine compounds such as Jin bu huan (金不換), veratrine, ciguateric toxins, and shellfish poisoning.21 All four cases presented with numbness and weakness shortly after taking a herbal decoction. The temporal relationship strongly suggested herb-related toxicity. However, none of their prescriptions contained aconite herbs. Yet aconitum alkaloids were detected in the urine specimens and leftover herbal broth. In one case, a piece of aconitum rootstock was also identified. Aconite was thus considered the ‘hidden’ cause of their acute poisoning.

In these four cases of ‘hidden’ aconite poisoning, there was no common herbal item listed in all the herbal prescriptions. Systematic erroneous substitution of other herbs by an aconite herb is thus unlikely. In our opinion, inadvertent contamination with an aconite herb is a possible explanation. Intuitively, a mix-up between aconite herbs and other herbs can occur at a number of stages, including harvesting, during processing, transportation, storage, and dispensing. The fresh aconitum rootstocks are extremely toxic and must be processed before use. The level of toxicity decreases after prolonged boiling, which is a standard decoction requirement for these herbs. Naturally this particular procedure will not be carried out if the presence of an aconite herb is not intended. ‘Hidden’ aconite poisoning, hence, is far more dangerous than intentional use of aconite.

Yunaconitine was the aconitum alkaloid detected in all four cases. It is not one of the common toxins (aconitine, hyaconitine, and mesaconitine) seen in aconite poisoning.22 The diagnosis would have been missed in these four cases if laboratory screening for yunaconitine was not included. The presence of yunaconitine suggests that the mix-up occurred in aconitum species of Yunnan origin.

The frequent occurrence of ‘hidden’ aconite poisoning has a public health significance for our community. This mistaken substitution with aconite herbs can occur randomly and result in severe poisonings. Our report only represents the tip of the iceberg, as the contamination source is often not detectable. It also highlights the importance of quality assurance in herbs with low margins of safety. Efforts should be made to enhance the safety of herbs through the promotion of Good Agricultural Practice and Good Manufacturing Practice. It is hoped that reporting of these cases can increase awareness of this problem among health care professionals and lead to improvement of control measures.23

References

12. Tai YT, But PP, Young K, Lau CP. Cardiotoxicity after accidental
13. So YT, Fung HT, Chung KL, Hung CY, Kam CW. A case of Chuanwu
14. Chan TY, Tomlinson B, Tse LK, Chan JC, Chan WW, Critchley JA.
Aconitine poisoning due to Chinese herbal medicines: a review. Vet
Hum Toxicol 1994;36:452-5.
15. Zhu DY, Bai DL, Tang XC. Recent studies on traditional Chinese
16. Dickens P, Tai YT, But PP, Tomlinson B, Ng HK, Yan KW. Fatal
accidental aconitine poisoning following ingestion of Chinese herbal
18. Yilmaz O, Eser M, Sahiner A, Altintop L, Yesildag O. Hypotension,
bradycardia and syncope caused by honey poisoning. Resuscitation
2006;68:405-8.
19. Huang HH, Yen DH, Wu ML, Deng JF, Huang CI, Lee CH. Acute
Erycibe henryi Prain (“Ting Kung Teng”) poisoning. Clin Toxicol
(Phila) 2006;44:71-5.
bradycardia caused by ciguatoxin poisoning after barracuda fish
eggs ingestion in southern Taiwan. Am J Trop Med Hyg 2005;73:
1026-7.
21. Lin CC, Chan TY, Deng JF. Clinical features and management of
22. Ito K, Ohyama Y, Konishi Y, Tanaka S, Mizugaki M. Method for
the simultaneous determination of Aconitum alkaloids and their
hydrolysis products by gas chromatography-mass spectrometry in
23. Chan TY. Incidence of herb-induced aconitine poisoning in Hong
Kong: impact of publicity measures to promote awareness among the